Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273279

RESUMEN

The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is reported in this study. Grafted chitosan was employed as a matrix support for Ag nanoparticles (NPs) for the surface-enhanced Raman spectroscopy (SERS). Chitosan (CS) was decorated with thiol and carboxylic acid groups by incorporating S-acetyl mercaptosuccinic anhydride (SAMSA) to yield CS-SAMSA. Then, Ag NPs were immobilized onto the CS-SAMSA (Ag@CS-SAMSA) and characterized by spectral methods (IR, Raman, NIR, solid state 13C NMR with CP-MAS, XPS, and TEM). Ag@CS-SAMSA was evaluated as a substrate for SERS, where methylene blue (MB) was used as a model dye adsorbate. The Ag@CS-SAMSA sensor demonstrated a high sensitivity (with an enhancement factor ca. 108) and reusability over three cycles, with acceptable reproducibility and storage stability. The Raman imaging revealed a large SERS effect, whereas the MB detection varied from 1-100 µM. The limits of detection (LOD) and quantitation (LOQ) of the biocomposite sensor were characterized, revealing properties that rival current state-of-the-art systems. The dye adsorption profiles were studied via SERS by fitting the isotherm results with the Hill model to yield the ΔG°ads for the adsorption process. This research demonstrates a sustainable dual-function biocomposite with tailored adsorption and sensing properties suitable for potential utility in advanced water treatment technology and environmental monitoring applications.


Asunto(s)
Quitosano , Nanopartículas del Metal , Plata , Espectrometría Raman , Quitosano/química , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Límite de Detección , Colorantes/química , Colorantes/análisis , Cationes/análisis , Contaminantes Químicos del Agua/análisis , Azul de Metileno/química
2.
Int J Biol Macromol ; 279(Pt 3): 135465, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250990

RESUMEN

Efficient capture of dyes from wastewater is of great importance for environmental remediation. Yet constructing adsorbents with satisfactory adsorption efficiency and low cost remains a major challenge. This work reports a simple and scalable method for the fabrication of functionalized porous pullulan hydrogel adsorbent decorated with ATTM@ZIF-8 for the adsorption of congo red (CR) and malachite green (MG). The embedding of ammonium tetrathiomolybdate (ATTM) into the ZIF-8 nanoclusters offered additional adsorption sites and enlarged the pore size of the resulting ATTM@ZIF-8. The homogeneous dispersion of the nanoparticles in the three-dimensional network of polysaccharide gels prevents their agglomeration and thus improves the affinity for dye molecules. The resulting adsorbent AZP-20 at optimized composite ratios exhibits high activity, selectivity, interference resistance, reusability and cytocompatibility in dye adsorption applications, and possesses high removal rate of dye in real water systems. Batch experiments demonstrated that the adsorption rate of AZP-20 for MG and CR was 1645.28 mg g-1 and 680.33 mg g-1, and would be influenced by pH conditions. Adsorption kinetics followed pseudo-second-order model. Adsorption isotherms followed Langmuir model for MG and Freundlich model for CR. The adsorption of dye molecules primarily relied on electrostatic interaction (MG) and π-π stacking interaction (CR). Conclusively, the prepared AZPs adsorbent illuminated good application prospects in the treatment of complex component dye wastewater.

3.
Carbohydr Polym ; 345: 122562, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227101

RESUMEN

In this investigation, a hydrogel adsorbent featuring remarkable efficiency in dye adsorption was successfully synthesized by the integration of natural polysaccharide (pullulan) and nanoparticles (ZIF-8@PDA). The prepared natural polysaccharide nanocomposite hydrogels not only exhibit superior mechanical strength and biocompatibility, but also demonstrate adeptness in the removal of dye pollutants. The dye removal capacities were 615.4 mg/g for malachite green (MG) and 525.8 mg/g for Congo red (CR), respectively. Notably, the adsorption process exhibits minimal susceptibility to variations in water quality and the presence of co-existing ions. The pH-responsive surface charge conversion capability of the adsorbent renders it recyclable, maintaining a dye adsorption performance exceeding 88 % even after 5 cycles of repeated usage. Overall, these environmentally friendly natural polysaccharide nanocomposite hydrogels hold potential for addressing complex wastewater treatment challenges and long-term use.

4.
Carbohydr Polym ; 346: 122662, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245516

RESUMEN

Chitosan materials are much important in adsorption, separation and water treatment due to their hydrophilicity, biodegradability and easy functionalization. However, they were difficult to form structural materials, which limited its application in engineering. In this paper, a new type of chitosan porous materials was prepared with two-step strategy involving the freezing crosslinking of chitosan with glutaraldehyde to form cryogels, and their subsequent reduction with NaBH4 to transform CN bonds into CN bonds, resulting in remarkable improvement of mechanical property. That is, the strength remained almost unchanged after 80 % deformation. The abundant -NH2 and -OH on the surface of materials, as well as the unique pore structure from cryogels, gave relatively high adsorption capacity for metals and dyes (88.73 ± 4.25 mg·g-1 for Cu(II) and 3261.05 ± 36.10 mg·g-1 for Congo red). The surface hydrophilicity of materials made it possible for selective water permeation with over 95 % separation efficiency for oil-water mixtures. In addition, simple hydrophobic modification using bromotetradecane achieved selective oil permeation with over 96 % separation efficiency for oil-water mixtures. This study not only provides a new strategy to endow chitosan materials with excellent mechanical property, large adsorption capacity and good oil-water separation performance, but also offers environmentally friendly materials for sewage treatment applications.

5.
Environ Technol ; : 1-14, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150860

RESUMEN

Red mud (RM) is the industrial solid waste produced after alumina extraction from bauxite, and most RM is directly discharged to the landfill yards without any treatment. In this study, modified red mud (MRM) was synthesized by a hydrothermal chemical modification method as an efficient adsorbent for methylene blue (MB) removal. The prepared MRM was characterized by X-ray fluorescence spectroscopy, X-ray diffraction, scanning electron microscope, transmission electron microscope, and Fourier transform infrared spectrometer. The effects of reaction time, initial MB concentrations, MRM dosage, temperature, and system pH were investigated in the MB batch adsorption experiments. The results showed that the modification method increased the specific surface area of RM material from 16.72 to 414.47 m2/g. The maximum adsorption capacity of MRM for MB was 280.18 mg/g under the conditions of initial MB concentration of 1000 mg/L, reaction time of 300 min, temperature of 25 ℃, and natural pH of 6.06. Meanwhile, the adsorption kinetics and equilibrium isotherms were demonstrated to fit well with the pseudo-second-order kinetic model and Temkin isotherm, respectively. This study provides a new method for the valorization of RM and demonstrates that MRM can be used as a low cost and environmentally friendly potential adsorbent for the removal of MB from wastewater.

6.
Int J Biol Macromol ; 277(Pt 2): 134277, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089537

RESUMEN

The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method. The resulting BC@MOF composite nanofibers have a high specific surface area of 651 m2/g and can be assembled into a self-supported porous membrane (BMMCa) through vacuum filtration with the assistance of calcium ions. The addition of Ca(II) significantly enhanced the mechanical properties of the membrane through dispersion effect and electrostatic interactions, as well as enhancing its adsorption performance through the salting-out effect. The BMMCa membrane, with its hierarchical porous structure and high flux, exhibits high selectivity for Congo red (CR) with an ultra-high adsorption capacity of 3518.6 mg/g. Furthermore, the self-supporting membrane achieved rapid and convenient removal of CR through circulating filtration adsorption. The adsorption mechanism and selectivity were verified through the molecular dynamics simulation calculations by Materials Studio (MS) software. This membrane-based adsorbent, with its ultra-high adsorption capacity, good selectivity, and recycling ability, has great potential for practical wastewater treatment applications.


Asunto(s)
Celulosa , Rojo Congo , Estructuras Metalorgánicas , Celulosa/química , Estructuras Metalorgánicas/química , Rojo Congo/química , Rojo Congo/aislamiento & purificación , Adsorción , Porosidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Nanofibras/química , Membranas Artificiales , Simulación de Dinámica Molecular , Circonio/química , Bacterias
7.
J Fluoresc ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180573

RESUMEN

Preparing a biomass adsorbent material with high-absorption performance but low cost plays a vital role in wastewater treatment. In this study, a novel nitrogen-doped sisal fiber-based carbon dots (SF-N-CDs) composite was prepared by directly growing carbon dots (CDs) on sisal fiber (SF) using a microwave method with polyethyleneimine (PEI) as a raw material. The prepared SF-N-CDs were characterized using FTIR, XRD, Contact angle(CA), TGA, XPS, and SEM. The results revealed that the CDs were successfully grown on SF. The adsorption properties of SF-N-CDs were significantly enhanced when they adsorbed methyl blue (MeB) dye. Specifically, the adsorption of MeB by SF-N-CDs was up to 619.7 mg/g, which was about 2.6 times higher than that of raw SF. This implied that the introduction of CDs increases the adsorption site, thus enhancing the adsorption capacity. Analysis on kinetics and thermodynamics of MeB adsorption by SF-N-CDs revealed that the adsorption process followed the Langmuir isotherm model and were consistent with both kinetic models. It signifies that the adsorption involves both physical and chemical adsorption processes. Further, the SF-N-CDs maintained a removal rate of 70.9% after six adsorption-regeneration cycles, demonstrating good regeneration performance. Moreover, the SF-N-CDs could selectively separate MeB from a mixture of rhodamine B and saffron T. Consequently, the findings of this study suggest that SF-N-CDs are promising adsorbents for anionic dyes.

8.
Sci Rep ; 14(1): 18505, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122903

RESUMEN

Due to the many applications of manganese oxides in water treatment, this research aimed to synthesize α-Mn2O3 nanoparticles through a green method and investigate the dye adsorption capacity of them. The α-Mn2O3 nanoparticles were successfully synthesized using KMnO4 and aqueous extract of Pyracantha angustofolia fruits under hydrothermal conditions and calcination. The products were identified using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM) analyses. The adsorption capacity of methyl orange (MO) and Congo red (CR) dyes were evaluated at different concentrations (25, 50, and 75 ppm) using α-Mn2O3 nanoparticles. Results revealed the spherical and porous structure of α-Mn2O3 nanoparticles with a specific surface area of 21.7 m2.g-1. Dye removal significantly increased with pH decrement. The adsorption capacity for MO and CR was 73.07 and 70.70 mg.g-1, respectively. The adsorption data of both dyes followed a pseudo-second-order kinetic model. The best fitted models for MO and CR adsorption were the Langmuir isotherm and the Dubinin-Radushkevich, respectively. In addition, a possible adsorption mechanism was proposed for both dyes. The findings showed that α-Mn2O3 nanoparticles are very efficient adsorbents for removing anionic dyes.

9.
Environ Sci Pollut Res Int ; 31(38): 50493-50512, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39096460

RESUMEN

Leveraging date palm spikelets (DPS) as a precursor, this study developed a DPS-derived composite (ZnO@DPS-AC) for water treatment, focusing on methyl orange (MO) removal. The composite was synthesized through ZnCl2 activation and pyrolysis at 600 °C. Comprehensive characterization was conducted using TGA, FTIR, XRD, SEM/EDS, and pHPZC. Characterization revealed a highly carbonaceous material (> 74% carbon) with significant porosity and surface functional groups. ZnO@DPS-AC demonstrated rapid MO removal, achieving over 45% reduction within 10 min and up to 99% efficiency under optimized conditions. The Langmuir model-calculated maximum adsorption capacity reached 226.81 mg/g at 20 °C. Adsorption mechanisms involved hydrogen bonding, π-π interactions, and pore filling. The composite showed effectiveness in treating real wastewater and removing other pollutants. This study highlights the potential of agricultural waste valorization in developing efficient, sustainable adsorbents for water remediation, contributing to circular bioeconomy principles.


Asunto(s)
Compuestos Azo , Carbón Orgánico , Phoeniceae , Termodinámica , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cinética , Compuestos Azo/química , Carbón Orgánico/química , Aguas Residuales/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Phoeniceae/química
10.
J Environ Manage ; 368: 122068, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116819

RESUMEN

Efficient filtering of dyes is essential for the protection of ecosystem and human health due to the considerable water pollution caused by the effluents released from the sector. We present a simple, scalable UV radiation-assisted method for treating methyl orange dye-polluted water from the textile industry using zirconium phosphate-loaded polyaniline-graphene oxide (PGZrP) composite. The new material was synthesized by sonochemically incorporating a polyaniline-graphene oxide composite with hydrothermally synthesized zirconium phosphate. The efficacy of PGZrP in eliminating methyl orange was evaluated using experimental conditions, and the adsorption capacity was investigated as a function of pH, temperature, adsorbent dosage, and adsorption period. The system follows Langmuir adsorption isotherm with pseudo-second-order kinetics. Thermodynamics studies showed that enthalpy (H°) and entropy (S°) values are positive, indicating that the dye adsorption increases with increasing temperature and is an endothermic reaction. The maximum adsorption capacity was found to be 36.45379 mg/g for methyl orange. Using the COMSOL Multiphysics CFD Platform, an attempt was made to check the temperature and concentration profile of a PGZrP composite in a real industrial system. The predicted result shows that there is no significant temperature change in the material during the adsorption process and the concentration of dye is mainly located on the top region of the bed. The developed zirconium phosphate decorated polyaniline-graphene oxide composite can be successfully utilized for the effective removal of methyl orange from industrial wastewater in bulk quantity which is coming from the textile industry, and the composite can be reused for several cycles with good efficiency. In this work, we have designed a miniaturized proof of concept to remove methyl orange from water which showed good dye removal efficiency.


Asunto(s)
Compuestos de Anilina , Colorantes , Grafito , Circonio , Grafito/química , Circonio/química , Compuestos de Anilina/química , Adsorción , Colorantes/química , Contaminantes Químicos del Agua/química , Textiles , Cinética , Compuestos Azo/química , Termodinámica , Industria Textil
11.
Polymers (Basel) ; 16(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39204548

RESUMEN

A functionalized ethylene-vinyl-alcohol (EVOH) nanofibrous membrane (NFM) was fabricated via co-electrospinning H4SiW12O40 (SiW12) and EVOH first, and then grafting citric acid (CCA) on the electrospun SiW12@EVOH NFM. Characterization with FT-IR, EDX, and XPS confirmed that CCA was introduced to the surface of SiW12@EVOH NFM and the Keggin structure of SiW12 was maintained well in the composite fibers. Due to a number of carboxyl groups introduced by CCA, the as-prepared SiW12@EVOH-CCA NFM can form a high number of hydrogen bonds with CR, and thus can be used to selectively absorb congo red (CR) in aqueous solutions. More importantly, the CR enriched in the NFM can be rapidly degraded via photocatalysis. SiW12 in the NFM acted as a photocatalyst, and the hydroxyl groups in the NFM acted as an electron donor to accelerate the photodegradation rate of CR. Meanwhile, the SiW12@EVOH-CCA NFM was regenerated and then exhibited a relatively stable adsorption capacity in five cycles of filtration-regeneration. The bifunctional nanofibrous membrane filter showed potential for use in the thorough purification of dye wastewater.

12.
Int J Biol Macromol ; 279(Pt 2): 134999, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214230

RESUMEN

The development of new efficient materials for the removal of water-soluble toxic organic dyes has been one of the focused research areas in the recent past. There is a strong demand for the new materials as most of the reported techniques/materials suffer from serious limitations. In this regard, a series of flexible chitosan-based task-specific polyurethane foams (PUCS-GP, PUCS-CA-GP, PUCS-TA-GP, and PUCS-GA-GP) associated with naturally available hydroxycarboxylic acids was developed. The basis for the preparation of these task-specific and functionalized PU foams is to possess amine groups for trapping the anionic dyes (example: Orange II denoted as OII) and carboxylic acid groups for attracting the cationic dyes (example: Rhodamine B denoted as RhB) under specified pH conditions. Batch adsorption experiments were conducted to assess and improve various parametric conditions. The experimental results revealed that the adsorption kinetics closely agree with the pseudo-second-order model having a maximum sorption capacity of 38.3 mg/g at pH 3 for OII on PUCS-GP and 48.4 mg/g at pH 6 for RhB on PUCS-CA-GP. Furthermore, the adsorption process was described by isotherms, kinetic equations and thermodynamic parameters (ΔG°, ΔH° and ΔS°). Notably, the regeneration of OII and RhB dyes from the exhausted PUCS-GP and PUCS-CA-GP materials was effectively accomplished. The recovered PUCS-GP shows >90 % OII and PUCS-CA-GP displays >70 % RhB removal efficiency even after twelve adsorption-desorption processes under mild conditions, demonstrating excellent recyclability/durability. The advantages of these functionalized foam materials are facile preparation, high adsorption capacity, good reusability, and very efficient removal of organic dyes from wastewater streams.

13.
Chempluschem ; : e202400192, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979961

RESUMEN

A three-dimensional (3D) anionic cadmium-organic framework, namely [(CH3)2NH2][Cd1.5(DMTDC)2] ⋅ 2DMA ⋅ 0.5H2O (Cd-MOF; DMA=N,N-dimethylacetamide), was successfully synthesized under solvothermal conditions by using a linear thienothiophene-containing dicarboxylate ligand, 3,4-dimethylthieno [2,3-b]-thiophene-2,5-dicar-boxylic acid (H2DMTDC). Single-crystal X-ray diffraction analysis reveals that Cd-MOF exhibits a 3D anionic framework with pcu α-Po topology, featuring rectangle and rhombus-shaped channels along b- and c- axis direction. Cd-MOF demonstrates selective adsorption of cationic dyes over anionic and neutral dyes. Additionally, Tb3+-loaded Cd-MOF serves as a fast-response fluorescence sensor for the sensitive detection of Fe3+ ions with a low limit of detection (8.90×10-7 M) through fluorescence quenching.

14.
J Colloid Interface Sci ; 676: 298-309, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032416

RESUMEN

Assembling microscopic metal-organic frameworks into macroscopic polymeric scaffolds to develop highly renewable materials has been a promising yet challenging area of research. Herein, chitosan (CS) blended with nano-cellulose (NC) was unidirectionally transformed into an aerogel with oriented macropores and then biomineralized with zeolite imidazolate frameworks-8 (ZIF-8) to form a hierarchical structured chitosan-nanocellulose/zeolite imidazolate frameworks-8 (CS-NC-ZIF-8) hybrid aerogel. Incorporating ZIF-8 significantly increases the versatility and mechanical strength with a Young's modulus of 14.18 MPa of the CS-NC aerogel. The incorporation of ZIF-8 into the aerogel not only enhances its adsorption capacity for methylene blue, rhodamine B, acid fuchsin, and methyl orange, but also facilitates the generation of electrons from water that can be transferred to degrade > 90 % of malachite green within 90 min in each catalytic cycle, and this capability was maintained for at least 10 consecutive cycles. Remarkably, the hybrid aerogel was highly renewable after the adsorption of cationic dyes and catalytic removal of malachite green. With its facile production process, high removal efficiency, affordable and green nature, and excellent regeneration feasibility, the CS-NC-ZIF-8 aerogel stands as a promising solution for addressing challenges associated with dye-contaminated water treatment.

15.
Carbohydr Polym ; 342: 122395, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048232

RESUMEN

Discharging wastewater from industrial dyeing and printing processes poses a significant environmental threat, necessitating green and efficient adsorbents. Cellulose nanocrystals (CNCs) have emerged as a promising option for dye adsorbing. However, the industrial production and commercialization of CNCs still faced low yield, time-consuming, and uneco-friendly. In this study, we proposed a facile hydrochloric/maleic acid (HCl/C4H4O4) hydrolysis method to synthesize carboxylated CNCs using Box-Behnken design and dual response surface design, which can systematically investigate the effect of experimental factors (temperature, time and HCl/C4H4O volume ratio) on the final products. The rod-liked carboxylated CNCs gave the highest yield of 90.50 %, maximum carboxyl content of 1.29 mmol/g, and efficient dye removal ratio of 91.5 %. Furthermore, compared to CNCs obtained by commonly sulfuric acid hydrolysis way (CNCs-S) with a Tmax of 242.6 °C, the CNCs extracted at 5 h exhibited significantly improved thermal stability with Tmax reaching 351.2 °C. The enriched carboxyl content and excellent thermal stability show potential wastewater treatment applications under harsh conditions.

16.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998904

RESUMEN

The impact of solvents on the efficiency of cationic dye adsorption from a solution onto protonated Faujasite-type zeolite (FAU-Y) was investigated in the prospect of supporting potential applications in wastewater treatment or in the preparation of building blocks for optical devices. The adsorption isotherms were experimentally determined for methylene blue (MB) and auramine O (AO) from single-component solutions in water and in ethanol. The limiting dye uptake (saturation capacity) was evaluated for each adsorption system, and it decreased in the order of MB-water > AO-water > AO-ethanol > MB-ethanol. The mutual distances and orientations of the adsorbed dye species, and their interactions with the oxygen sites of the FAU-Y framework, with the solvent molecules, and among themselves were inferred from Monte Carlo simulations and subsequently utilized to rationalize the observed differences in the saturation capacity. The dye-solvent competition and the propensity of the dyes to form compact pi-stacked dimers were shown to play an important role in establishing a non-uniform distribution of the adsorbed species throughout the porous space. The two effects appeared particularly strong in the case of the MB-water system. The necessity of including solvent effects in modeling studies is emphasized.

17.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999008

RESUMEN

Metal-Organic Frameworks (MOFs) are particularly attractive sorbents with great potential for the removal of toxic dye pollutants from industrial wastewaters. The uniform dispersion of MOF particles on suitable substrates then represents a key condition to improve their processability and provide good accessibility to the active sites. In this work, we investigate the efficiency of a natural bacterial cellulose material derived from Kombucha (KBC) as an active functional support for growing and anchoring MOF particles with UiO-66 structures. An original hierarchical microstructure was obtained for the as-developed Kombucha cellulose/UiO-66 (KBC-UiO) composite material, with small MOF crystals (~100 nm) covering the cellulose fibers. Promising adsorption properties were demonstrated for anionic organic dyes such as fluorescein or bromophenol blue in water at pH 5 and pH 7 (more than 90% and 50% removal efficiency, respectively, after 10 min in static conditions). This performance was attributed to both the high accessibility and uniform dispersion of the MOF nanocrystals on the KBC fibers together with the synergistic effects involving the attractive adsorbing properties of UiO-66 and the surface chemistry of KBC. The results of this study provide a simple and generic approach for the design of bio-sourced adsorbents and filters for pollutants abatement and wastewater treatment.

18.
Small ; : e2404449, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011980

RESUMEN

Currently, facing electromagnetic protection requirement under complex aqueous environments, the bacterial reproduction and organic dye corrosion may affect the composition and micro-structures of absorbers to weaken their electromagnetic properties. To address such problems, herein, a series of CoFe2O4@BCNPs (cobalt ferrite @ bio-carbon nanoparticles) composites are synthesized via co-hydrothermal and calcining process. The coupling of magnetic cobalt ferrite and dielectric bio-carbon derived from Apium can endow the composite multiple absorption mechanisms and matched impedance for effective microwave absorption, attaining a bandwidth of 8.12 GHz at 2.36 mm and an intensity of -49.85 dB at 3.0 mm. Due to the ROS (reactive oxygen species) stimulation ability and heavy metal ions of cobalt ferrite, the composite realizes an excellent antibacterial efficiency of 99% against Gram negative bacteria of Escherichia coli. Moreover, the loose porous layer of surface stacked bio-carbon can promote the adsorption of methylene blue for subsequent eliminating, a high removal rate of 90.37% for organic dye can be also achieved. This paper offers a new insight for rational design of composite's component and micro-structure to construct multi-functional microwave absorber for satisfying the electromagnetic protection demand in complicated environments.

19.
Chemistry ; 30(45): e202401874, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38853148

RESUMEN

Cyclic dipeptides (CDPs) are crucial building blocks for a range of functional nanomaterials due to their simple chemical structure and high molecular stability. In this investigation, we synthesized a set of S-benzyl-L-cysteine-based CDPs (designated as P1-P6) and thoroughly examined their self-assembly behavior in a methanol-water solvent to elucidate the relationship between their structure and gelation properties. The hydrophobicity of the amino acids within the CDPs was gradually increased. The present study employed a comprehensive array of analytical techniques, including NMR, FT-IR, AFM, thioflavin-T, congo-red CD, X-ray crystallography, and biophysical calculations like Hirshfield Surface analysis and DFT analysis. These methods revealed that in addition to hydrogen bonding, the hydrophobic nature of the amino acid side chain significantly influences the propensity of CDPs to form hydrogels. Each CDP yielded distinct nanofibrillar networks rich in ß-sheet structures, showcasing unique morphological features. Moreover, we explored the practical application of these CDP-based hydrogels in water purification by utilizing them to remove harmful organic dyes from contaminated water. This application underscores the potential of CDPs in addressing environmental challenges, offering a promising avenue for the future development of these materials in water treatment technologies.


Asunto(s)
Cisteína , Dipéptidos , Hidrogeles , Nanoestructuras , Péptidos Cíclicos , Dipéptidos/química , Cisteína/química , Hidrogeles/química , Péptidos Cíclicos/química , Nanoestructuras/química , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Purificación del Agua/métodos , Espectroscopía Infrarroja por Transformada de Fourier
20.
Int J Biol Macromol ; 274(Pt 1): 133378, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914401

RESUMEN

Deep-eutectic solvents (DES) have emerged as promising candidates for preparing nanocomposites. In this study, a DES-based graphitic carbon nitride (g-C3N4)/ZnO/Chitosan (Ch) nanocomposite was synthesized to remove malachite green (MG) dye from water. The DES was prepared by mixing and heating citric acid as a hydrogen bond acceptor and lactic acid as a hydrogen bond donor. This is the first report of the removal of MG using DES-based nanocomposites. Experiments on kinetics and isothermal adsorption were conducted to systematically explore the adsorption performances of nanocomposite toward dye. At 25 °C, the highest adsorption performance was obtained with alkaline media (>90 % removal). The greatest adsorption capacity (qm) was 59.52 mg g-1 at conditions (30 mg L-1 MG solution, pH 9, 3 mg nanocomposite per 10 mL of MG solution, 25 °C, 150 rpm, and 150 min) based on the calculation from the best-fitting isotherm model (Langmuir). The adsorption process was most appropriately kinetically described by the PSO model. The Monte Carlo (MC) and molecular dynamic (MC) results are correlated with experimental findings to validate the theoretical predictions and enhance the overall understanding of the adsorption process. Electronic structure calculations reveal the nature of interactions, including hydrogen bonding and electrostatic forces, between the nanocomposite and MG molecules.


Asunto(s)
Quitosano , Grafito , Simulación de Dinámica Molecular , Método de Montecarlo , Nanocompuestos , Colorantes de Rosanilina , Óxido de Zinc , Quitosano/química , Nanocompuestos/química , Colorantes de Rosanilina/química , Colorantes de Rosanilina/aislamiento & purificación , Adsorción , Grafito/química , Óxido de Zinc/química , Cinética , Disolventes Eutécticos Profundos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Compuestos de Nitrógeno/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA