Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PeerJ ; 12: e17874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224819

RESUMEN

Acute pancreatitis (AP) is a sudden-onset disease of the digestive system caused by abnormal activation of pancreatic enzymes. Dual oxidase 2 (DUOX2) has been found to be elevated in the progression of a variety of inflammatory diseases. Therefore, we analyzed the specific roles of DUOX2 in AP development. Blood samples were collected from of AP patients and healthy people, and the caerulein- stimulated human pancreatic duct cells (H6C7) were utilized to establish an AP cell model. Cell growth and apoptosis were measured using an MTT assay and TUNEL staining. Additionally, RT-qPCR and western blot assays were conducted to assess the RNA and protein expressions of the cells. ELISA kits were used to determine TNF-α, IL-6, IL-8, and IL-1ß levels. The interaction between DUOX2 and miR-605-3p was predicted using the Targetscan database and confirmed by dual-luciferase report assay. We found that DUOX2 increased while miR-605-3p decreased in the blood of AP patients and caerulein-stimulated H6C7 cells. DUOX2 was targeted by miR-605-3p. Furthermore, DUOX2 knockdown or miR-605-3p overexpression promoted cell viability, decreased the TNF-α, IL-6, IL-8, and IL-1ß levels, and inhibited apoptosis rate in caerulein-stimulated H6C7 cells. DUOX2 knockdown or miR-605-3p overexpression also increased the Bcl-2 protein levels and down-regulated Bax, cleaved-caspase-1, NLRP3 and p-p65. Interestingly, DUOX2 overexpression reversed the miR-605-3p mimic function in the caerulein-treated H6C7 cells. In conclusion, our research demonstrated that DUOX2 knockdown relieved the injury and inflammation in caerulein-stimulated H6C7 cells.


Asunto(s)
Ceruletida , Oxidasas Duales , MicroARNs , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Pancreatitis , Piroptosis , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oxidasas Duales/metabolismo , Oxidasas Duales/genética , Pancreatitis/patología , Pancreatitis/metabolismo , Pancreatitis/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , FN-kappa B/metabolismo , Transducción de Señal , Masculino , Línea Celular , Conductos Pancreáticos/patología , Conductos Pancreáticos/metabolismo , Apoptosis , Femenino , Persona de Mediana Edad
2.
Gastro Hep Adv ; 3(6): 830-841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280905

RESUMEN

Background and Aims: The colonic epithelium serves as both a barrier to lumenal contents and a gatekeeper of inflammatory responses. In ulcerative colitis (UC), epithelial dysfunction is a core feature, but little is known about the cellular changes that may underlie disease pathology. We therefore evaluated how the chromatin epigenetics and proteome of epithelial cells differs between health and UC. Methods: We sorted live CD326+ epithelial cells from colon biopsies of healthy control (HC) screening colonoscopy recipients and from inflamed or uninflamed colon segments of UC patients on no biologic nor immunomodulator therapy (n = 5-7 subjects per group). Cell lysates were analyzed by proteomic evaluation and nuclei were analyzed for open chromatin with assay for transposase-accessible chromatin using sequencing. Results: Proteins most highly elevated in inflamed UC biopsies relative to HC were those encoded by the HLA-DRA (P = 3.1 × 10-33) and CD74 (P = 1.6 × 10-27), genes associated with antigen presentation, and the antimicrobial dual oxidase 2 (DUOX2) (P = 3.2 × 10-28) and lipocalin-2 (P = 2.2 × 10-26) genes. Conversely, the water channel aquaporin 8 was strikingly less common with inflammation (P = 1.9 × 10-18). Assay for transposase-accessible chromatin using sequencing revealed more open chromatin around the aquaporin 8 gene in HCs (P = 2.0 × 10-2) and more around the DUOX2/DUOXA2 locus in inflamed UC colon (P = 5.7 × 10-4), suggesting an epigenetic basis for differential protein expression by epithelial cells in health and disease. Conclusion: Numerous differences exist between the proteome and chromatin of colonic epithelial cells in UC patients and HCs, some of which correlate to suggest specific epigenetic mechanisms regulating the epithelial proteome.

3.
Genes Cells ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126279

RESUMEN

The membrane-integrated NADPH oxidases DUOX1 and DUOX2 are recruited to the apical plasma membrane in epithelial cells to release hydrogen peroxide, thereby playing crucial roles in various functions such as thyroid hormone synthesis and host defense. However, it has remained unknown about the molecular mechanism for apical sorting of DUOX1 and DUOX2. Here we show that DUOX1 and DUOX2 are correctly sorted to the apical membrane via the membrane-spanning DUOX maturation proteins DUOXA1 and DUOXA2, respectively, when co-expressed in MDCK epithelial cells. Impairment of N-glycosylation of DUOXA1 results in mistargeting of DUOX1 to the basolateral membrane. Similar to DUOX1 complexed with the glycosylation-defective DUOXA1, the naturally non-glycosylated oxidase NOX5, which forms a homo-oligomer, is targeted basolaterally. On the other hand, a mutant DUOXA2 deficient in N-glycosylation is less stable than the wild-type protein but still capable of recruiting DUOX2 to the apical membrane, whereas DUOX2 is missorted to the basolateral membrane when paired with DUOXA1. These findings indicate that DUOXA2 is crucial but its N-glycosylation is dispensable for DUOX2 apical recruitment; instead, its C-terminal region seems to be involved. Thus, apical sorting of DUOX1 and DUOX2 is likely regulated in a distinct manner by their respective partners DUOXA1 and DUOXA2.

4.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126042

RESUMEN

Thyroid dyshormonogenesis (THD) is a heterogeneous group of genetic diseases caused by the total or partial defect in the synthesis or secretion of thyroid hormones. Genetic variants in DUOX2 can cause partial to total iodination organification defects and clinical heterogeneity, from transient to permanent congenital hypothyroidism. The aim of this study was to undertake a molecular characterization and genotype-phenotype correlation in patients with THD and candidate variants in DUOX2. A total of 31 (19.38%) patients from the Catalan Neonatal Screening Program presented with variants in DUOX2 that could explain their phenotype. Fifteen (48.39%) patients were compound heterozygous, 10 (32.26%) heterozygous, and 4 (12.90%) homozygous. In addition, 8 (26.67%) of these patients presented variants in other genes. A total of 35 variants were described, 10 (28.57%) of these variants have not been previously reported in literature. The most frequent variant in our cohort was c.2895_2898del/p.(Phe966SerfsTer29), classified as pathogenic according to reported functional studies. The final diagnosis of this cohort was permanent THD in 21 patients and transient THD in 10, according to reevaluation and/or need for treatment with levothyroxine. A clear genotype-phenotype correlation could not be identified; therefore, functional studies are necessary to confirm the pathogenicity of the variants.


Asunto(s)
Oxidasas Duales , Estudios de Asociación Genética , Humanos , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Femenino , Masculino , Recién Nacido , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/patología , Fenotipo , Mutación , Genotipo , Hipotiroidismo Congénito/genética , Tamizaje Neonatal , Tiroxina
5.
Life Sci ; 351: 122794, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866218

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a chronic, recurrent, non-specific inflammatory disease, and the pathogenesis of the disease remains unclear. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which are simultaneously closely related to reactive oxygen species (ROS). Although seliciclib is highly effective against immune inflammation, its mechanism on colitis is unclear. This study demonstrated that seliciclib administration partially inhibited ferroptosis, alleviating symptoms and inflammation in experimental colitis. METHODS: The mouse UC model was induced by 3.0 % dextran sodium sulfate (DSS) for 7 days and treated with seliciclib (10 mg/kg) for 5 days. In the in vitro model, LPS (100 µg/mL) was used for induction and seliciclib (10 µM) was applied for 2 h. Meanwhile, appropriate histopathology, inflammatory response, oxidative stress, and ferroptosis regulators were measured. RESULTS: This study primarily investigated the role of seliciclib in regulating ferroptosis in UC. Bioinformatics analysis indicated that Dual oxidase 2 (DUOX2) may serve a role involved in the ferroptosis of UC. The experimental findings demonstrated that seliciclib alleviates symptoms and inflammation in DSS-induced UC mice and partially mitigates the occurrence of ferroptosis both in vivo and in vitro, possibly through the modulation of DUOX2. CONCLUSIONS: Ferroptosis is strongly associated with the development of colitis, and seliciclib plays an essential role in ferroptosis and inflammation in UC. The suppression of ferroptosis in the intestinal epithelium could be a therapeutic approach for UC.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Ferroptosis , Ratones Endogámicos C57BL , Animales , Ferroptosis/efectos de los fármacos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Ratones , Masculino , Sulfato de Dextran/toxicidad , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos
6.
Clin Pediatr Endocrinol ; 33(2): 94-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572382

RESUMEN

Most patients with resistance to thyroid hormone (RTH) test negative in newborn screening (NBS) for congenital hypothyroidism (CH). Here, we present a case of RTH diagnosed through NBS. The patient presented to us after her NBS for CH revealed high TSH (23.4 µIU/mL) and free T4 (FT4) (5.40 ng/dL) levels. Apart from tachycardia, she exhibited no other manifestations related to excess or deficiency of thyroid hormones. A confirmatory test replicated the findings, showing elevated serum TSH levels (35.7 µIU/mL) along with high FT4 levels (5.84 ng/dL). Ultrasonography showed marked thyroid gland enlargement (> +4 SD). Targeted next-generation sequencing of genes associated with genetic thyroid disorders revealed a previously reported THRB variant, p.Gly345Cys. Unexpectedly, two biallelic DUOX2 variants (p.His678Arg and p.Arg1334Trp) were also detected. At her last visit, no significant issues were observed with neurological development, growth, bone maturation, or gastrointestinal symptoms related to thyroid function at the age of 1 year, without treatment for RTH and CH. During follow-up, the TSH and FT4 levels gradually decreased. In conclusion, we report a patient with simultaneous RTH and DUOX2 defects, demonstrating the value of conducting a comprehensive analysis of multiple genes associated with thyroid diseases to better comprehend the pathogenesis in patients with atypical thyroid-related phenotypes.

7.
Gut Microbes ; 16(1): 2341647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659246

RESUMEN

The insights into interactions between host genetics and gut microbiome (GM) in colorectal tumor susceptibility (CTS) remains lacking. We used Collaborative Cross mouse population model to identify genetic and microbial determinants of Azoxymethane-induced CTS. We identified 4417 CTS-associated single nucleotide polymorphisms (SNPs) containing 334 genes that were transcriptionally altered in human colorectal cancers (CRCs) and consistently clustered independent human CRC cohorts into two subgroups with different prognosis. We discovered a set of genera in early-life associated with CTS and defined a 16-genus signature that accurately predicted CTS, the majority of which were correlated with human CRCs. We identified 547 SNPs associated with abundances of these genera. Mediation analysis revealed GM as mediators partially exerting the effect of SNP UNC3869242 within Duox2 on CTS. Intestine cell-specific depletion of Duox2 altered GM composition and contribution of Duox2 depletion to CTS was significantly influenced by GM. Our findings provide potential novel targets for personalized CRC prevention and treatment.


Asunto(s)
Azoximetano , Ratones de Colaboración Cruzada , Neoplasias Colorrectales , Microbioma Gastrointestinal , Polimorfismo de Nucleótido Simple , Animales , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inducido químicamente , Humanos , Ratones , Ratones de Colaboración Cruzada/genética , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Predisposición Genética a la Enfermedad , Masculino , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Modelos Animales de Enfermedad , Femenino
8.
Horm Res Paediatr ; : 1-7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636486

RESUMEN

INTRODUCTION: NK2 homeobox 1 (NKX2-1) encodes a transcription factor, NKX2-1, that is expressed in the thyroid gland, lung, and brain. Dual oxidase 2 (DUOX2) encodes an enzyme which generates hydrogen peroxide and is involved in the thyroid hormone synthesis. Cases of congenital hypothyroidism (CH) with dyshormonogenesis showing two or more genetic variants are increasingly reported. We describe the first case of transient dyshormonogenesis who had experimentally verified a loss-of-function NKX2-1 variant and DUOX2 variants. CASE PRESENTATION: The proband was a 15-year-old female patient with CH who was diagnosed in the frame of newborn screening for CH. She had a mildly elevated serum TSH level (14.56 mU/L), a low free thyroxine level (0.87 ng/dL), and a high thyroglobulin (Tg) level (>800 ng/mL). Ultrasonography revealed goiter. She was followed clinically without levothyroxine treatment and showed normal growth and development. She had slightly high Tg levels throughout the clinical course. Next-generation sequencing-based genetic analysis revealed that the patient was heterozygous for an NKX2-1 variant (p.Ile228Ser), a nonsense DUOX2 variant (p.[Lys530*;His678Arg]), and a functional DUOX2 polymorphism (p.His678Arg). NKX2-1 p.Ile228Ser showed about 50% reduced residual activity on the Tg promoter. CONCLUSION: A partial loss-of-function NKX2-1 variant with a monoallelic nonsense DUOX2 variant and a DUOX2 functional polymorphism can cause transient CH with high serum Tg levels.

9.
Mol Biol Rep ; 51(1): 399, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456993

RESUMEN

PURPOSE: Crohn's disease is a chronic gastrointestinal inflammatory disease with possible extraintestinal symptoms. There are predisposing genetic factors and even monogenic variants of the disorder. One of the possible genetic factors are variants of the DUOX2 gene. The protein product of the DUOX2 gene is a dual oxidase enzyme producing H2O2 in the bowel. Reduced H2O2 levels impact mucosal homeostasis and contribute to the development of inflammatory bowel disease. Thus far, only 19 patients with IBD with the DUOX2 variants have been described. METHODS: Here we present a case report of an adolescent female diagnosed at eleven years of age with IBD that was subsequently reclassified as Crohn's disease. She was treated with immunosuppressants and biological therapy but experienced additional complications. Her peripheral blood lymphocyte DNA was studied using massive parallel sequencing. Detected variants were functionally studied. RESULTS: Whole exome sequencing found two novel DUOX2 gene variants: a de novo variant c.3646C>T; p.R1216W and a maternally inherited variant c.3391G>A; p.A1131T which were initially classified as variants of unknown significance. However, follow-up functional studies demonstrated that both DUOX2 variants led to impaired H2O2 generation, which led to their reclassification to the likely pathogenic class according to the ACMG.net. Therefore, we conclude that these variants are causative for the disease. CONCLUSIONS: Identifying novel variants in patients with Crohn's disease and their families is important for precision medicine approaches and understanding of the pathogenesis of likely "monogenic" rare forms of inflammatory bowel disease.


Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Adolescente , Femenino , Enfermedad de Crohn/genética , Oxidasas Duales/genética , Peróxido de Hidrógeno , Enfermedades Inflamatorias del Intestino/genética
10.
Front Genet ; 14: 1276697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075699

RESUMEN

Very Early Onset Inflammatory Bowel Disease (VEO-IBD) is potentially associated with genetic disorders of the intestinal epithelial barrier or inborn errors of immunity (IEI). Dual oxidase 2 (DUOX2), an H2O2-producing NADPH oxidase expressed at apical enterocyte membranes, plays a crucial role in innate defense response. Biallelic DUOX2 mutations have been described only in two patients with VEO-IBD to date. We report the case of a 1-month-old female infant who presented persistent high C-reactive protein (CRP) levels from birth and anemia. Positive occult blood and very high calprotectin in the stool were detected and abdominal ultrasound showed thickened last ileal loop. Full endoscopy evaluation revealed important colon stenosis with multiple pseudo-polyploidy formations that resulted refractory to steroid therapy, requiring a partial colic resection. Histological examination of biopsy samples showed morphological features of IBD. Whole Exome Sequencing (WES) disclosed compound heterozygous variants in the DUOX2 gene: the pathogenic c.2524C>T; p.Arg842Ter and the variant of uncertain significance (VUS) c.3175C>T; p.Arg1059Cys. Molecular and functional studies showed the presence of mutant DUOX2 in the intestinal epithelium of the patient, albeit with at least 50% decreased catalytic activity. In conclusion, we describe the third patient to date with compound heterozygous variants of DUOX2, responsible for monogenic neonatal-IBD. This case expands the knowledge about Mendelian causes of VEO-IBD and DUOX2 deficiency. We suggest that DUOX2 should be part of the diagnostic evaluation of patients with suspected monogenic VEO-IBD.

11.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069054

RESUMEN

Chlorogenic acid (CGA), a polyphenol found mainly in coffee and tea, exerts antioxidant, anti-inflammatory and anti-apoptotic effects at the gastrointestinal level. However, although CGA is known to cross the blood-brain barrier (BBB), its effects on the CNS are still unknown. Oligodendrocytes (OLs), the myelin-forming cells in the CNS, are the main target in demyelinating neuroinflammatory diseases such as multiple sclerosis (MS). We evaluated the antioxidant, anti-inflammatory and anti-apoptotic roles of CGA in M03-13, an immortalized human OL cell line. We found that CGA reduces intracellular superoxide ions, mitochondrial reactive oxygen species (ROS) and NADPH oxidases (NOXs) /dual oxidase 2 (DUOX2) protein levels. The stimulation of M03-13 cells with TNFα activates the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway, leading to an increase in superoxide ion, NOXs/DUOX2 and phosphorylated extracellular regulated protein kinase (pERK) levels. In addition, tumor necrosis factor alpha (TNF-α) stimulation induces caspase 8 activation and the cleavage of poly-ADP-ribose polymerase (PARP). All these TNFα-induced effects are reversed by CGA. Furthermore, CGA induces a blockade of proliferation, driving cells to differentiation, resulting in increased mRNA levels of myelin basic protein (MBP) and proteolipid protein (PLP), which are major markers of mature OLs. Overall, these data suggest that dietary supplementation with this polyphenol could play an important beneficial role in autoimmune neuroinflammatory diseases such as MS.


Asunto(s)
Antioxidantes , Ácido Clorogénico , Humanos , Antioxidantes/farmacología , Ácido Clorogénico/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Superóxidos , Enfermedades Neuroinflamatorias , Oxidasas Duales , Antiinflamatorios/farmacología , Polifenoles/farmacología , Oligodendroglía
12.
Antioxidants (Basel) ; 12(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37891879

RESUMEN

Intestinal vessels play a critical role in nutrient absorption, whereas the effect and mechanism of low birth weight (LBW) on its formation remain unclear. Here, twenty newborn piglets were assigned to the control (CON) group (1162 ± 98 g) and LBW group (724 ± 31 g) according to their birth weight. Results showed that the villus height and the activity of maltase in the jejunum were lower in the LBW group than in the CON group. LBW group exhibited a higher oxidative stress level and impaired mitochondrial function in the jejunum and was lower than the CON group in the intestinal vascular density. To investigate the role of oxidative stress in intestinal angiogenesis, H2O2 was employed to induce oxidative stress in porcine intestinal epithelial cells (IPEC-J2). The results showed that the conditioned media from IPEC-J2 with H2O2 treatment decreased the angiogenesis of porcine vascular endothelial cells (PVEC). Transcriptome analysis revealed that a higher expression level of dual oxidase 2 (DUOX2) was found in the intestine of LBW piglets. Knockdown of DUOX2 in IPEC-J2 increased the proliferation and decreased the oxidative stress level. In addition, conditioned media from IPEC-J2 with DUOX2-knockdown was demonstrated to promote the angiogenesis of PVEC. Mechanistically, the knockdown of DUOX2 decreased the reactive oxygen species (ROS) level, thus increasing the angiogenesis in a matrix metalloproteinase 3 (MMP3) dependent manner. Conclusively, our results indicated that DUOX2-induced oxidative stress inhibited intestinal angiogenesis through MMP3 in a LBW piglet model.

13.
Antioxidants (Basel) ; 12(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37891968

RESUMEN

Reactive oxygen species (ROS) are highly reactive molecules formed from diatomic oxygen. They act as cellular signals, exert antibiotic activity towards invading microorganisms, but can also damage host cells. Dual oxidase 2 (DUOX2) is the main ROS-producing enzyme in the intestine, regulated by cues of the commensal microbiota and functions in pathogen defense. DUOX2 plays multiple roles in different organs and cell types, complicating the functional analysis using systemic deletion models. Here, we interrogate the precise role of epithelial DUOX2 for intestinal homeostasis and host-microbiome interactions. Conditional Duox2∆IEC mice lacking DUOX2, specifically in intestinal epithelial cells, were generated, and their intestinal mucosal immune phenotype and microbiome were analyzed. Inflammatory susceptibility was evaluated by challenging Duox2∆IEC mice in the dextran sodium sulfate (DSS) colitis model. DUOX2-microbiome interactions in humans were investigated by paired analyses of mucosal DUOX2 expression and fecal microbiome data in patients with intestinal inflammation. Under unchallenged conditions, we did not observe any obvious phenotype of Duox2∆IEC mice, although intestinal epithelial ROS production was drastically decreased, and the mucosal microbiome composition was altered. When challenged with DSS, Duox2∆IEC mice were protected from colitis, possibly by inhibiting ROS-mediated damage and fostering epithelial regenerative responses. Finally, in patients with intestinal inflammation, DUOX2 expression was increased in inflamed tissue, and high DUOX2 levels were linked to a dysbiotic microbiome. Our findings demonstrate that bidirectional DUOX2-microbiome interactions contribute to mucosal homeostasis, and their dysregulation may drive disease development, thus highlighting this axis as a therapeutic target to treat intestinal inflammation.

14.
Brain Sci ; 13(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37626566

RESUMEN

We report a 20-year-old, female, adopted Indian patient with over 662 Mb regions of homozy-gosity who presented with intellectual disability, ataxia, schizophrenia, retinal dystrophy, moder-ate-to-severe progressive sensorineural hearing loss (SNHL), congenital hypothyroidism, cleft mi-tral valve with mild mitral valve regurgitation, and dysmorphic features. Exome analysis first on a clinical basis and subsequently on research reanalysis uncovered pathogenic variants in three nu-clear genes following two modes of inheritance that were causal to her complex phenotype. These included (1) compound heterozygous variants in BBS6 potentially causative for Bardet-Biedl syn-drome 6; (2) a homozygous, known pathogenic variant in the stereocilin (STRC) gene associated with nonsyndromic deafness; and (3) a homozygous variant in dual oxidase 2 (DUOX2) gene asso-ciated with congenital hypothyroidism. A variant of uncertain significance was identified in a fourth gene, troponin T2 (TNNT2), associated with cardiomyopathy but not the cleft mitral valve, with mild mitral regurgitation seen in this case. This patient was the product of an apparent first-degree relationship, explaining the multiple independent inherited findings. This case high-lights the need to carefully evaluate multiple independent genetic etiologies for complex pheno-types, particularly in the case of consanguinity, rather than presuming unexplained features are expansions of known gene disorders.

15.
Front Pediatr ; 11: 1185802, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252044

RESUMEN

Background: Congenital hypothyroidism (CH) is an neonatal endocrine disorder. Traditional newborn screening is the mainstream method of CH screening, so as to ensure the early detection and treatment of CH. This method is limited as it has high rates of false positives and negatives. Genetic screening can be used to address the shortcomings of traditional newborn Screening (NBS); however, the comprehensive clinical value of genetic screening is yet to be systematically studied. Methods: A total of 3,158 newborns who accepted the newborn screening and genetic screening were recruited for this study. Biochemical screening and genetic screening were performed at the same time. The level of TSH with the DBS was detected by time-resolved immunofluorescence assay. High-throughput sequencing technology based on targeted gene capture was used for genetic screening. The suspected neonatal was recalled and tested serum TSH, and FT4. Finally, the effectiveness of traditional NBS and combined screening was compared. Results: In this study, 16 cases were diagnosed by traditional NBS. 10 cases of DUOX2 mutation were found in newborn CH-related genetic screening, including 5 homozygous and 5 compound heterozygous variations. We found that the c.1588A > T mutations in DUOX2 constituting the predominant site in the present cohort.Compared with NBS and genetic screening, the sensitivity of combined screening increased by 11.1% and 55.6%, respectively. Compared with NBS and genetic screening, the negative predictive value of combined screening increased by 0.1% and 0.4%, respectively. Conclusions: Combined traditional NBS and genetic screening reduces the false negative rate of CH screening and improves the early and accurate identification of neonates with CH. Our research explains the mutation spectrum of CH in this region, and provisionally demonstrates the necessity, feasibility and significance of genetic screening in newborns and provides a solid basis for future clinical developments.

16.
Front Genet ; 14: 1066199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873947

RESUMEN

Preimplantation genetic testing (PGT) is an effective approach to improve clinical outcomes and prevent transmission of genetic imbalances by selecting embryos free of disease-causing genes and chromosome abnormalities. In this study, PGT was performed for a challenging case in which a couple simultaneously carried a maternal subchromosomal reciprocal translocation (RecT) revealed by fluorescence in situ hybridization involving the chromosome X (ChrX) and heterozygous mutations in dual oxidase 2 (DUOX2). Carriers of RecT are at increased risk for infertility, recurrent miscarriages, or having affected children due to the unbalanced gametes produced. DUOX2 mutation results in congenital hypothyroidism. Pedigree haplotypes for DUOX2 was constructed after the mutations were verified by Sanger sequencing. Since male carriers of X-autosome translocations may exhibit infertility or other abnormalities, pedigree haplotype for chromosomal translocation was also constructed to identify embryo with RecT. Three blastocysts were obtained by in vitro fertilization and underwent trophectoderm biopsy, whole genomic amplification, and next-generation sequencing (NGS). A blastocyst lacking copy number variants and RecT but carrying the paternal gene mutation in DUOX2, c.2654G>T (p.R885L) was used for embryo transfer, resulting in a healthy female infant whose genetic properties were confirmed by amniocentesis. Cases containing RecT and single gene disorder are rare. And the situation is more complicated when the subchromosomal RecT involving ChrX cannot be identified with routine karyotype analysis. This case report contributes significantly to the literature and the results have shown that the NGS-based PGT strategy may be broadly useful for complex pedigrees.

17.
Clin Pediatr Endocrinol ; 32(1): 11-25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761498

RESUMEN

Several excellent guidelines and expert opinions on congenital hypothyroidism (CH) are currently available. Nonetheless, these guidelines do not address several issues related to CH in detail. In this review, the authors chose the following seven clinical issues that they felt were especially deserving of closer scrutiny in the hope that drawing attention to them through discussion would help pediatric endocrinologists and promote further interest in the treatment of CH. 1. How high should the levothyroxine (L-T4) dose be for initial treatment of severe and permanent CH? 2. What is the optimal method for monitoring treatment of severe CH? 3. At what level does maternal iodine intake during pregnancy affect fetal and neonatal thyroid function? 4. Does serum thyroglobulin differ between patients with a dual oxidase 2 (DUOX2) variants and those with excess iodine? 5. Who qualifies for a genetic diagnosis? 6. What is the best index for distinguishing transient and permanent CH? 7. Is there any cancer risk associated with CH? The authors discussed these topics and jointly edited the manuscript to improve the understanding of CH and related issues.

18.
FASEB J ; 37(2): e22765, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36607642

RESUMEN

The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.


Asunto(s)
Neutrófilos , Virus , Humanos , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Células Epiteliales/metabolismo , Citocinas/metabolismo , Antivirales/farmacología , Quimiocinas/metabolismo
19.
Clin Chim Acta ; 539: 1-6, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423704

RESUMEN

BACKGROUND: Permanent congenital hypothyroidism (CH) is usually a more severe type of CH. However, the molecular etiology and clinical features of permanent CH remain unclear. METHODS: We recruited 42 patients who were diagnosed with CH and followed-up after diagnosis. Demographic information and data at diagnosis and treatment were recorded. Genetic analyses were performed using whole exome sequencing. Based on the presence or absence of variants and differences in clinical features, we grouped the study participants and analyzed their characteristics. RESULTS: A total of 29 patients (69.0 %) were identified as having variants potentially related to their disease. Among the 24 patients with normal-sized thyroid gland-in-situ (GIS) or goiter, 23 (95.8 %, P < 0.001) had variants. This is compared to 18 patients with thyroid dysgenesis (TD), of which six (33.3 %) had genetic variants. We detected 55 variants in six genes, the most frequently mutated gene being DUOX2 (70.9 %). Biallelic DUOX2 variants were detected in 14 of 24 (58.3 %) GIS or goiter patients. Compared to the cases with variants, the L-T4 dose at 2 and 3 years of age and current dose were higher in the unmutated cases. At 2 years of age, patients with TD required higher doses of L-T4 supplementation. Patients with DUOX2 variants showed lower doses of L-T4 being required at 2 and 3 years of age and current. Furthermore, patients with GIS or goiter with DUOX2 variants showed lower doses of L-T4. CONCLUSIONS: Patients with CH, whether TD or GIS or goiter, are at risk of developing a permanent condition. Compared with patients with TD, the detection of variants was higher in patients with GIS or goiter. The most frequently mutated gene was DUOX2, with a biallelic type. Patients with TD required higher doses of L-T4 supplementation with age, whereas those patients with the DUOX2 variant required relatively lower doses.


Asunto(s)
Hipotiroidismo Congénito , Bocio , Disgenesias Tiroideas , Humanos , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/tratamiento farmacológico , Hipotiroidismo Congénito/genética , Oxidasas Duales/genética , NADPH Oxidasas/genética , Mutación
20.
J Family Reprod Health ; 17(4): 205-215, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38807627

RESUMEN

Objective: Dual oxidases (DUOX1, DUOX2) belong to the NADPH oxidase (NOX) family, which produce H2O2 necessary for thyroid hormone biosynthesis. This study aims to evaluate gene expression for DUOX1, DUOX2 in PCOS patients and its relation with thyroid hormone and magnesium levels. Materials and methods: Totally 88 cases were studied including 24 people with PCOS and hypothyroidism, 44 people with PCOS and normal thyroid function, and 20 hypothyroid patients without PCOS. In comparison 40 healthy controls in the age group of 16-35 years matched for age group and BMI were evaluated. Using Vegaro syringe 5 cc of blood was sampled from all 128 people and after RNA extraction and cDNA synthesis using Real-Time PCR technique, the expression level of DUOX1 and DUOX2 genes was investigated. Results: The results of hormonal tests showed that there is a significant difference between the level of T4, T3, and TSH hormones in hypothyroid patients with or without PCOS in comparison to the control group. Regarding the level of Mg, the results showed that there is a significant difference between the levels of Mg in PCOS group with or without hypothyroidism in comparison to the control group. Gene expression results showed that the relative changes of DUOX1 gene expression in different groups compared to the control group were significantly reduced P<0.05. In the polycystic group with hypothyroidism, the gene expression level showed a decrease compared to the normo-thyroid polycystic group and the hypothyroid non-PCO group, which was statistically significant P<0.05. Conclusion: According to the results of the present study and the previous studies that have been published in the field of Duox1, it can be assumed that the reduction of Duox1 expression can interfere with the oxidative stress system. Further studies with other molecular techniques may help to understand the exact action mechanism of these genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA