Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 288: 117736, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34256291

RESUMEN

Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water.


Asunto(s)
Agua Potable , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos , Bacterias/genética , Biopelículas , Desinfección , Agua Potable/análisis , Genes Bacterianos , Abastecimiento de Agua
2.
Sci Total Environ ; 765: 144394, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33418327

RESUMEN

Halobenzoquinones (HBQs) are an emerging class of drinking water disinfection byproducts (DBPs) that have been frequently detected in drinking water and are highly relevant to bladder cancer. Among the studied HBQs, 2,6-dichloro-1,4-benzoquinone (DCBQ) had the highest detection frequency and concentrations in drinking water. However, compared to other countries, the studies on HBQs that are being conducted in China, especially those on HBQs in drinking water, are not sufficient. Therefore, the concentrations of DCBQ in the Tianjin drinking water supply system were investigated in two seasons (winter and summer), and the risk that is posed by DCBQ in drinking water was evaluated for the first time. In addition, since HBQs are prone to hydrolysis in neutral and alkaline environments, identification of the hydrolytic characteristics of DCBQ at various pH values and in the real water environment is essential for better describing the environmental behavior of DCBQ; hence, the hydrolysis characteristics of DCBQ in phosphate buffers with various pH values and in four water samples were also examined in our study. The results demonstrated that DCBQ was widely detected in the drinking water treatment process and distribution systems, and the average concentration in our study (12.0 ng/L) was at a moderately high level compared with the reported concentration of DCBQ in the drinking water distribution networks. The risk quotient (RQ) of DCBQ is equivalent to that of trihalomethanes (THMs); thus, the relatively low concentrations of DCBQ should also be considered. Furthermore, the results demonstrated that the hydrolysis of DCBQ follows first-order reaction kinetics, the reaction rate accelerates as the pH of the phosphate buffer system increases, and the rate of hydrolysis of DCBQ in drinking water is affected not only by the pH but also by other environmental factors, such as the organic matter concentration. Therefore, further investigation is necessary to identify the main factor of DCBQ hydrolysis in real water environments.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Benzoquinonas , China , Desinfección , Agua Potable/análisis , Hidrólisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
3.
Data Brief ; 25: 104135, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31294068

RESUMEN

The metagenomic data presented herein contains the bacterial community profile of a drinking water supply system (DWSS) supplying O'Kiep, Namaqualand, South Africa. Representative samples from the source (Orange River) to the point of use (O'Kiep), through a 150km DWSS used for drinking water distribution were analysed for bacterial content. PCR amplification of the 16S rRNA V1-V3 regions was undertaken using oligonucleotide primers 27F and 518R subsequent to DNA extraction. The PCR amplicons were processed using the illumina® reaction kits as per manufactures guidelines and sequenced using the illumina® MiSeq-2000, by means of MiSeq V3 kit. The data obtained was processed using a bioinformatics QIIME software with a compatible fast nucleic acid (fna) file. The raw sequences were deposited at the National Centre of Biotechnology (NCBI) and the Sequence Read Archive (SRA) database, obtaining accession numbers for each species identified.

4.
Environ Int ; 106: 207-233, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28552550

RESUMEN

To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water.


Asunto(s)
Agua Potable/análisis , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Humanos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA