Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 253: 116143, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452567

RESUMEN

A modern agriculture uses alternative pest control methods to boost productivity, leading to an accumulation of organophosphorus (OPPs) congeners. This necessitates an intuitive and quick way to identify OPPs congeners. A colorimetric sensor for detecting OPPs congeners using a double-enzyme cascade reaction has been successfully designed and constructed in this study. The OPPs regulate the color changes induced by manganese dioxide nanoflowers (MnO2 NFs) and specific alkaline phosphatases (ALP) during the etching of gold nanopyramids (Au NBPs). The ascorbic acid (AA) produced by ALP hydrolysis inhibits Au NBPs etching by MnO2 NFs oxidized 3, 3', 5, 5'-tetramethylbenzidine (TMB). By inhibiting ALP catalytic activity, OPPs prevent AA formation. In this process, Au NBPs will undergo further etching, resulting in various colors so they can be analyzed semi-quantitatively with the naked eye. It has been found that different types of OPPs inhibit enzymes differently and therefore result in varying degrees of etching of Au NBPs. Principal Component Analysis (PCA) is performed by smart devices that convert R, G, and B signals into digital signals. This colorimetric array tests various foods (tea, apple, and cabbage). Colorimetric visualization sensors combined with data analysis will be used in real-life product development.


Asunto(s)
Técnicas Biosensibles , Plaguicidas , Plaguicidas/toxicidad , Plaguicidas/análisis , Óxidos , Compuestos Organofosforados , Compuestos de Manganeso , Colorimetría/métodos , Ácido Ascórbico , Fosfatasa Alcalina
2.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771024

RESUMEN

Immobilizing enzymes with nanozymes to catalyze cascade reactions overcomes many of the shortcomings of biological enzymes in industrial manufacturing. In the study, glucose oxidases were covalently bound to FeS2 nanozymes as immobilization carriers while chitosan encapsulation increased the activity and stability of the immobilized enzymes. The immobilized enzymes exhibited a 10% greater increase in catalytic efficiency than the free enzymes while also being more stable and catalytically active in environments with an alkaline pH of 9.0 and a high temperature of 100 °C. Additionally, the FeS2 nanozyme-driven double-enzyme cascade reaction showed high glucose selectivity, even in the presence of lactose, dopamine, and uric acid, with a limit of detection (LOD) (S/N = 3) as low as 1.9 × 10-6 M. This research demonstrates that nanozymes may be employed as ideal carriers for biological enzymes and that the nanozymes can catalyze cascade reactions together with natural enzymes, offering new insights into interactions between natural and synthetic biosystems.


Asunto(s)
Quitosano , Enzimas Inmovilizadas , Glucosa Oxidasa/metabolismo , Límite de Detección , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA