Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Front Mol Neurosci ; 17: 1417567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282658

RESUMEN

Introduction: Neuropathic pain (NP) conditions arising from injuries to the nervous system due to trauma, disease, or neurotoxins are chronic, severe, debilitating, and exceedingly difficult to treat. However, the mechanisms of NP are not yet clear. Here we explored the role of Dock4, an atypical Rac1 GEF, in the development of NP. Methods: Mechanical allodynia was assessed as paw withdrawal threshold by a dynamic plantar aesthesiometer. Immunofluorescence staining was conducted to investigate the expression and localization of Dock4, Rac1 and GluN2B. Quantitative analysis of Dock4, Rac1 and GluN2B were determined by qRT-PCR and Western blot assay. Spontaneous excitatory and inhibitory postsynaptic currents in spinal cord slices were examined using whole cell patch clam. Dendritic spine remodeling and synaptogenesis were detected in cultured dorsal spinal neurons. Results and discussion: We found that SNL caused markedly mechanical allodynia accompanied by increase of Dock4, GTP-Rac1and GluN2B, which was prevented by knockdown of Dock4. Electrophysiological tests showed that SNL facilitated excitatory synaptic transmission, however, this was also inhibited by Dock RNAi-LV. Moreover, knockdown of Dock4 prevented dendritic growth and synaptogenesis. Conclusion: In summary, our data indicated that Dock4 facilitated excitatory synaptic transmission by promoting the expression of GluN2B at the synaptic site and synaptogenesis, leading to the occurrence of NP.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39233015

RESUMEN

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8) deficiency is a primary immunodeficiency in which allogeneic hematopoietic cell transplantation (HCT) represents the only known cure. We tested the ability of a busulfan-based regimen to achieve reliable engraftment and high levels of donor chimerism with acceptable toxicity in a prospective clinical trial in DOCK8 deficiency. OBJECTIVE: To both evaluate the ability of HCT to reverse the clinical phenotype and to correct the immunologic abnormalities by 1-year post-HCT. METHODS: We conducted a prospective HCT trial for recipients with DOCK8 deficiency. Subjects were recruited from October 5th, 2010, to December 30th, 2022. Donor sources included fully matched related (MRD) and unrelated (MUD) and haploidentical (Haplo) donors. The reduced toxicity, myeloablative conditioning regimen contained no serotherapy. Graft-versus-host disease (GVHD) prophylaxis included either a calcineurin inhibitor (CNI) with methotrexate (MTX) or post-HCT cyclophosphamide (PT/Cy) followed by tacrolimus and mycophenolate mofetil (MMF). The trial was later amended to study PT/Cy in all patients. (ClinicalTrials.gov NCT01176006). RESULTS: Thirty-six subjects, children, and adults (median age 16.4 years) underwent HCT for DOCK8 deficiency. Most patients, 33 of 36 (92%), achieved full (≥98%) donor chimerism in whole blood as early as day +30. With a median potential follow-up of 7.4 years, 29 (80.6%) were alive with no evidence of new DOCK8 deficiency-related complications. PT/Cy was effective in reducing the risk of acute GVHD in patients who had received MUDs and Haplo transplants, but it was associated with transient delays in immune-reconstitution and hemorrhagic cystitis (HC). CONCLUSION: A busulfan-based HCT regimen using PT/Cy for GVHD prophylaxis and a broad range of donor types and hematopoietic cell sources were well-tolerated, leading to the reversal of the clinical immunophenotype.

3.
Adv Sci (Weinh) ; : e2405987, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159301

RESUMEN

Non-healing diabetic wounds and ulcer complications, with persistent cell dysfunction and obstructed cellular processes, are leading causes of disability and death in patients with diabetes. Currently, there is a lack of guideline-recommended hypoglycemic drugs in clinical practice, likely due to limited research and unclear mechanisms. In this study, it is demonstrated that liraglutide significantly accelerates wound closure in diabetic mouse models (db/db mice and streptozotocin-induced mice) by improving re-epithelialization, collagen deposition, and extracellular matrix remodeling, and enhancing the proliferation, migration, and adhesion functions of keratinocytes. However, these effects of improved healing by liraglutide are abrogated in dedicator of cytokinesis 5 (Dock5) keratinocyte-specific knockout mice. Mechanistically, liraglutide induces cellular function through stabilization of unconventional myosin 1c (Myo1c). Liraglutide directly binds to Myo1c at arginine 93, enhancing the Myo1c/Dock5 interaction by targeting Dock5 promoter and thus promoting the proliferation, migration, and adhesion of keratinocytes. Therefore, this study provides insights into liraglutide biology and suggests it may be an effective treatment for diabetic patients with wound-healing pathologies.

4.
Mol Ther Methods Clin Dev ; 32(3): 101289, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39109217

RESUMEN

The hepatitis B virus (HBV) infects many people worldwide. As HBV infection frequently leads to liver fibrosis and carcinogenesis, developing anti-HBV therapeutic drugs is urgent. Therapeutic drugs for preventing covalently closed circular DNA (cccDNA) production, which can eliminate HBV infection, are unavailable. The host factor dedicator of cytokinesis 11 (DOCK11) is involved in the synthesis and maintenance of HBV cccDNA in vitro. However, the effectiveness of DOCK11 as a target for the in vivo elimination of HBV cccDNA remains unclear. In this study, we assess whether DOCK11 inhibitors suppress HBV cccDNA production in mouse models of HBV infection. The tocopherol-conjugate hetero- gapmer, a DNA/RNA duplex of gapmer/complementary RNA targeting the DOCK11 sequence, partially reduces the expression of DOCK11, but not that of HBV cccDNA, in the livers of HBV-infected human hepatocyte chimeric mice, along with weight loss and decreased serum human albumin levels. Lipid nanoparticle-encapsulated chemically modified siRNAs specific for DOCK11 suppress DOCK11 expression and decrease HBV cccDNA levels without adverse effects in the mice. Therefore, nucleic acid-based drugs targeting DOCK11 in hepatocytes are potentially effective anti-HBV therapeutics that can reduce HBV cccDNA levels in vivo.

5.
J Infect Dis ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140311

RESUMEN

BACKGROUND: Chronic norovirus infection (CNI) causes significant morbidity in immunocompromised patients. No effective prevention or treatment currently exists. METHODS: Two patients with inborn errors of immunity, X- linked severe combined immunodeficiency (X-SCID) and DOCK8 deficiency, were followed longitudinally for clinical course, immune reconstitution, norovirus-specific T cell (NST) response, B cell reconstitution, and norovirus-specific antibody production. Samples were obtained in the peri-hematopoietic stem cell transplant setting (HSCT) before and after CNI clearance. The norovirus strain causing CNI was followed longitudinally for norovirus stool viral loads and sequencing. RESULTS: The noroviruses were identified as GII.4 Sydney[P4 New Orleans] in one patient and GII.17[P17] in the other. An exacerbation of diarrhea post-HSCT in the patient with X-SCID was consistent with norovirus infection but not with graft-vs-host-disease on pathologic samples. Both patients recovered polyfunctional NSTs in the CD4 and CD8 T cell compartments which recognized multiple norovirus structural and non-structural viral antigens. T cell responses were minimal during active CNI but detectable after resolution. Mapping of norovirus-specific T cell responses between the patient with DOCK8 and his matched sibling donor were nearly identical. B cell reconstitution or new endogenous antibody production for IgA or IgG were not observed. CONCLUSION: This report is the first to demonstrate reconstitution of norovirus-specific T cell immunity after HSCT closely temporally aligned with clearance of CNI suggesting that cellular immunity is sufficient for norovirus clearance.

6.
J Nat Med ; 78(4): 1013-1028, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014275

RESUMEN

Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.


Asunto(s)
Mucosa Intestinal , Lipopolisacáridos , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Humanos , Células CACO-2 , Receptor Toll-Like 4/metabolismo , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/toxicidad , Ratas , Transducción de Señal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Masculino , Regulación hacia Arriba/efectos de los fármacos , Ratas Sprague-Dawley
7.
Clin Oral Investig ; 28(8): 432, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020145

RESUMEN

OBJECTIVES: Temporomandibular joint disorder (TMD) is a complex condition with pain and dysfunction in the temporomandibular joint and related muscles. Scientific evidence indicates both genetic and environmental factors play a crucial role in TMD. In this study, we aimed to discover the genetic changes in individuals from 4 generations of an Iranian family with signs and symptoms of TMD and malocclusion Class III. MATERIALS AND METHODS: Whole Exome Sequencing (WES) was performed in 4 patients (IV-8, IV-9, V-4, and V-6) with TMD according to (DC/TMD), along with skeletal Class III malocclusion. Then, PCR sequencing was performed on 23 family members to confirm the WES. RESULTS: In the present study, WES results analysis detected 6 heterozygous non-synonymous Single Nucleotide Variants (SNVs) in 5 genes, including CRLF3, DNAH17, DOCK1, SEPT9, and VWDE. A heterozygous variant, c.2012T > A (p.F671Y), in Exon 20 of the DOCK1 (NM_001290223.2) gene was identified. Then, this variant was investigated in 19 other members of the same family. PCR-Sequencing results showed that 7/19 had heterozygous TA genotype, all of whom were accompanied by malocclusion and TMD symptoms and 12/19 individuals had homozygous TT genotype, 9 of whom had no temporomandibular joint problems or malocclusion. The remaining 3 showed mild TMD clinical symptoms. The 5 other non-synonymous SNVs of CRLF3, DNAH17, SEPT9, and VWDE were not considered plausible candidates for TMD. CONCLUSIONS: The present study identified a heterozygous nonsynonymous c.2012T > A (p.F671Y) variant of the DOCK1 gene is significantly associated with skeletal class III malocclusion, TMD, and its severity in affected individuals in the Iranian pedigree. CLINICAL RELEVANCE: The role of genetic factors in the development of TMD has been described. The present study identified a nonsynonymous variant of the DOCK1 gene as a candidate for TMD and skeletal class III malocclusion in affected individuals in the Iranian pedigree.


Asunto(s)
Secuenciación del Exoma , Linaje , Trastornos de la Articulación Temporomandibular , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Proteínas Activadoras de GTPasa/genética , Irán , Maloclusión de Angle Clase III/genética , Reacción en Cadena de la Polimerasa , Trastornos de la Articulación Temporomandibular/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-38990461

RESUMEN

Cardiac fibrosis following myocardial infarction (MI) seriously affects the prognosis and survival rate of patients. This study aimed to determine the effect and regulation mechanism of the dedicator of cytokinesis 2 (DOCK2) during this process. Experiments were carried out in mice in vivo, and in Ang II treated cardiac fibroblasts (CFs) in vitro. DOCK2 was increased in mouse myocardial tissues after MI and Ang II-treated CFs. In MI mice, DOCK2 silencing improved cardiac function, and ameliorated cardiac fibrosis. DOCK2 knockdown suppressed the activation of CFs and decreased the expression of α-SMA, collagen I, and collagen III. Suppression of DOCK2 mitigated Ang II induced migration of CFs. DOCK2 inhibition reduced the activity of the PI3K/Akt and Wnt/ß-catenin pathways, while this change could be reversed by the pathway activators, SC79 and SKL2001. In summary, DOCK2 suppression improves cardiac dysfunction and attenuates cardiac fibrosis after MI via attenuating PI3K/Akt and Wnt/ß-catenin pathways.

9.
Front Immunol ; 15: 1414573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044832

RESUMEN

Dedicator of cytokinesis 8 (DOCK8) deficiency represents a primary immunodeficiency with a wide range of clinical symptoms, including recurrent infections, atopy, and increased malignancy risk. This study presents a case of a 6-year-old girl with DOCK8 deficiency, characterized by severe, treatment-resistant herpetic infections who was successfully treated with siltuximab and glucocorticoids. The successful use of siltuximab in achieving remission highlights the pivotal role of interleukin-6 (IL-6) in DOCK8 deficiency pathogenesis and suggests that IL-6 modulation can be critical in managing DOCK8 deficiency-related viral infections, which may inform future therapeutic strategies for DOCK8 deficiency and similar immunodeficiencies.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Prednisona , Humanos , Femenino , Niño , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Prednisona/uso terapéutico , Verrugas/tratamiento farmacológico , Verrugas/diagnóstico , Resultado del Tratamiento , Recurrencia , Interleucina-6 , Anticuerpos Monoclonales
10.
Pediatr Blood Cancer ; 71(9): e31151, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38953149

RESUMEN

BACKGROUND: The molecular pathogenesis of acute myeloid leukemia (AML) was dramatically clarified over the latest two decades. Several important molecular markers were discovered in patients with AML that have helped to improve the risk stratification. However, developing new treatment strategies for relapsed/refractory acute myeloid leukemia (AML) is crucial due to its poor prognosis. PROCEDURE: To overcome this difficulty, we performed an assay for transposase-accessible chromatin with sequencing (ATAC-seq) in 10 AML patients with various gene alterations. ATAC-seq is based on direct in vitro sequencing adaptor transposition into native chromatin, and is a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq analysis revealed increased accessibility of the DOCK1 gene in patients with AML harboring poor prognostic factors. Following the ATAC-seq results, quantitative reverse transcription polymerase chain reaction was used to measure DOCK1 gene expression levels in 369 pediatric patients with de novo AML. RESULTS: High DOCK1 expression was detected in 132 (37%) patients. The overall survival (OS) and event-free survival (EFS) among patients with high DOCK1 expression were significantly worse than those patients with low DOCK1 expression (3-year EFS: 34% vs. 60%, p < .001 and 3-year OS: 60% vs. 80%, p < .001). To investigate the significance of high DOCK1 gene expression, we transduced DOCK1 into MOLM14 cells, and revealed that cytarabine in combination with DOCK1 inhibitor reduced the viability of these leukemic cells. CONCLUSIONS: Our results indicate that a DOCK1 inhibitor might reinforce the effects of cytarabine and other anti-cancer agents in patients with AML with high DOCK1 expression.


Asunto(s)
Biomarcadores de Tumor , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Niño , Masculino , Femenino , Pronóstico , Preescolar , Adolescente , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Lactante , Tasa de Supervivencia , Estudios de Seguimiento , Pueblos del Este de Asia , Proteínas de Unión al GTP rac
11.
Bioorg Chem ; 150: 107513, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905888

RESUMEN

The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.


Asunto(s)
Aloe , Antibacterianos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Óxido de Zinc , Aloe/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Óxido de Zinc/síntesis química , Relación Dosis-Respuesta a Droga , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sonicación , Tamaño de la Partícula , Relación Estructura-Actividad , Estructura Molecular
12.
BMC Infect Dis ; 24(1): 495, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750422

RESUMEN

BACKGROUND: In November 2019, the world faced a pandemic called SARS-CoV-2, which became a major threat to humans and continues to be. To overcome this, many plants were explored to find a cure. METHODS: Therefore, this research was planned to screen out the active constituents from Artemisia annua that can work against the viral main protease Mpro as this non-structural protein is responsible for the cleavage of replicating enzymes of the virus. Twenty-five biocompounds belonging to different classes namely alpha-pinene, beta-pinene, carvone, myrtenol, quinic acid, caffeic acid, quercetin, rutin, apigenin, chrysoplenetin, arteannunin b, artemisinin, scopoletin, scoparone, artemisinic acid, deoxyartemisnin, artemetin, casticin, sitogluside, beta-sitosterol, dihydroartemisinin, scopolin, artemether, artemotil, artesunate were selected. Virtual screening of these ligands was carried out against drug target Mpro by CB dock. RESULTS: Quercetin, rutin, casticin, chrysoplenetin, apigenin, artemetin, artesunate, sopolin and sito-gluside were found as hit compounds. Further, ADMET screening was conducted which represented Chrysoplenetin as a lead compound. Azithromycin was used as a standard drug. The interactions were studied by PyMol and visualized in LigPlot. Furthermore, the RMSD graph shows fluctuations at various points at the start of simulation in Top1 (Azithromycin) complex system due to structural changes in the helix-coil-helix and beta-turn-beta changes at specific points resulting in increased RMSD with a time frame of 50 ns. But this change remains stable after the extension of simulation time intervals till 100 ns. On other side, the Top2 complex system remains highly stable throughout the time scale. No such structural dynamics were observed bu the ligand attached to the active site residues binds strongly. CONCLUSION: This study facilitates researchers to develop and discover more effective and specific therapeutic agents against SARS-CoV-2 and other viral infections. Finally, chrysoplenetin was identified as a more potent drug candidate to act against the viral main protease, which in the future can be helpful.


Asunto(s)
Artemisia annua , Proteasas 3C de Coronavirus , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Artemisia annua/química , Simulación por Computador , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , COVID-19/virología , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
14.
Viruses ; 16(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793626

RESUMEN

HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Virus de la Hepatitis B , Hepatocitos , Humanos , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Hepatocitos/virología , Hepatocitos/metabolismo , Internalización del Virus , Replicación Viral , Hepatitis B/virología , Hepatitis B/metabolismo , ADN Viral/metabolismo , ADN Viral/genética , Animales
15.
Immunogenetics ; 76(3): 165-173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587548

RESUMEN

X-linked hyper-immunoglobulin M (X-HIGM) syndrome and autosomal recessive hyper-immunoglobulin E syndrome (HIES) are rare inborn errors of immunity characterized by recurrent infections due to immune system impairment. In this study, we identified a novel hemizygous CD40 ligand (CD40L) mutation and compound heterozygous dedicator of cytokinesis-8 (DOCK8) mutations in two Han Chinese families with X-HIGM and HIES, respectively. We aimed to investigate the association between their genotypes and phenotypes. Genomic DNA was extracted from peripheral blood samples obtained from the families. Whole exome sequencing and Sanger sequencing were performed to identify and verify pathogenic variants in the two families. Clinical analyses of the probands were also performed. A novel hemizygous mutation of CD40L in exon 2 (c.257delA) was identified in the first proband, resulting in the substitution of glycine with glutamic acid at codon 86 of the protein. This leads to premature termination of translation at downstream codon 9 (p.E86Gfs*9). Sanger sequencing confirmed that the variant was inherited from the mother. The second proband carried two novel compound heterozygous mutations in DOCK8: one at exon 14 (c.1546C > G) inherited from the father, and the other at intron 41 (c.5355 + 6C > T; splicing) inherited from the mother. This study enhances our understanding of the pathogenetic mutation spectrum of CD40L and DOCK8 genes, facilitating the prenatal diagnosis of X-HIGM and HIES and enabling timely treatment of patients.


Asunto(s)
Ligando de CD40 , Factores de Intercambio de Guanina Nucleótido , Heterocigoto , Mutación , Linaje , Niño , Preescolar , Femenino , Humanos , Masculino , Pueblo Asiatico/genética , Ligando de CD40/genética , China , Pueblos del Este de Asia , Secuenciación del Exoma , Factores de Intercambio de Guanina Nucleótido/genética , Síndrome de Inmunodeficiencia con Hiper-IgM Tipo 1/genética , Síndrome de Job/genética
16.
Curr Issues Mol Biol ; 46(4): 3092-3107, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38666924

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. Individuals with ASD may exhibit difficulties in social interactions, communication challenges, repetitive behaviors, and restricted interests. While genetic mutations in individuals with ASD can either activate or inactivate the activities of the gene product, impacting neuronal morphogenesis and causing symptoms, the underlying mechanism remains to be fully established. Herein, for the first time, we report that genetically conserved Rac1 guanine-nucleotide exchange factor (GEF) Dock5 signalosome molecules control process elongation in the N1E-115 cell line, a model line capable of achieving neuronal morphological changes. The increased elongation phenotypes observed in ASD and intellectual disability (ID)-associated Semaphorin-5A (Sema5A) Arg676-to-Cys [p.R676C] were also mediated by Dock5 signalosome molecules. Indeed, knockdown of Dock5 using clustered regularly interspaced short palindromic repeat (CRISPR)/CasRx-based guide(g)RNA specifically recovered the mutated Sema5A-induced increase in process elongation in cells. Knockdown of Elmo2, an adaptor molecule of Dock5, also exhibited similar recovery. Comparable results were obtained when transfecting the interaction region of Dock5 with Elmo2. The activation of c-Jun N-terminal kinase (JNK), one of the primary signal transduction molecules underlying process elongation, was ameliorated by either their knockdown or transfection. These results suggest that the Dock5 signalosome comprises abnormal signaling involved in the process elongation induced by ASD- and ID-associated Sema5A. These molecules could be added to the list of potential therapeutic target molecules for abnormal neuronal morphogenesis in ASD at the molecular and cellular levels.

17.
Methods Mol Biol ; 2797: 67-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570453

RESUMEN

Molecular docking is a popular computational tool in drug discovery. Leveraging structural information, docking software predicts binding poses of small molecules to cavities on the surfaces of proteins. Virtual screening for ligand discovery is a useful application of docking software. In this chapter, using the enigmatic KRAS protein as an example system, we endeavor to teach the reader about best practices for performing molecular docking with UCSF DOCK. We discuss methods for virtual screening and docking molecules on KRAS. We present the following six points to optimize our docking setup for prosecuting a virtual screen: protein structure choice, pocket selection, optimization of the scoring function, modification of sampling spheres and sampling procedures, choosing an appropriate portion of chemical space to dock, and the choice of which top scoring molecules to pick for purchase.


Asunto(s)
Algoritmos , Proteínas Proto-Oncogénicas p21(ras) , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Programas Informáticos , Proteínas/química , Descubrimiento de Drogas , Ligandos , Unión Proteica , Sitios de Unión
18.
BMC Cancer ; 24(1): 296, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438882

RESUMEN

BACKGROUND: The effect of DOCK1 gene on the biological behavior of endometrial carcinoma cells and its related pathway has not been reported. METHODS: The immunohistochemical method and western blot were utilized to analyze DOCK1 protein expression in endometrial tissues and cells, respectively. CCK-8, BrdU, transwell and flow cytometry were performed to analyze the effect of DOCK1 expression changes on the viability, proliferation, invasion, migration and apoptosis of endometrial cancer cells, respectively. The effects of DOCK1 gene on Bcl-2, MMP9, Ezrin, E-cadherin and c-RAF/ERK1/2 signaling pathway were evaluated by western blot. The xenograft models were constructed to analyze the effect of DOCK1 in vivo. RESULTS: DOCK1 expression was increased in endometrial cancer tissues and cells compared with those in normal adjacent tissues and cells. DOCK1 knockout could inhibit the malignant biological behavior of endometrial cancer cells, while DOCK1 overexpression played the opposite effect. The expression of E-cadherin was upregulated and those of MMP9, Ezrin, Bcl-2, p-c-RAF (S338) and p-ERK1/2 (T202/Y204) were downregulated after DOCK1 knockout, while DOCK1 overexpression played the opposite effect. Additionally, Raf inhibitor LY3009120 reversed the function of DOCK1 on malignant biological behavior. In vivo experiment results showed that the growth and weight of transplanted tumors in nude mice were inhibited after DOCK1 knockout. The changes of E-cadherin, MMP9, Ezrin and Bcl-2 expressions in the transplanted tumors were consistent with those in vitro. CONCLUSION: DOCK1 could enhance the malignant biological behavior of endometrial cancer cells, which might be through c-RAF/ERK1/2 signaling pathways in vitro and in vivo.


Asunto(s)
Neoplasias Endometriales , Sistema de Señalización de MAP Quinasas , Animales , Ratones , Femenino , Humanos , Metaloproteinasa 9 de la Matriz , Ratones Desnudos , Factores de Transcripción , Neoplasias Endometriales/genética , Cadherinas/genética , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas de Unión al GTP rac
19.
BMC Med Genomics ; 17(1): 70, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443923

RESUMEN

BACKGROUND: We aimed to identify some potential biomarkers for elderly osteoporosis (OP) by integral analysis of lncRNA and mRNA expression data. METHODS: A total of 8 OP cases and 5 healthy participants were included in the study. Fasting peripheral venous blood samples were collected from individuals, and total RNA was extracted. RNA-seq library was prepared and sequenced on the Illumina HiSeq platform. Differential gene expression analysis was performed using "DESeq2" package in R language. Functional enrichment analysis was conducted using the "clusterProfiler" package, and the cis- and trans-regulatory relationships between lncRNA and target mRNA were analyzed by the lncTar software. A protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified through the MCODE plugin in Cytoscape. RESULTS: We identified 897 differentially expressed lncRNAs (DELs) and 1366 differentially expressed genes (DEGs) between normal and OP samples. After co-expression network analysis and cis-trans regulatory genes analysis, we identified 69 candidate genes regulated by lncRNAs. Then we further screened 7 genes after PPI analysis. The target gene DOCK4, trans-regulated by two lncRNAs, was found to be significantly upregulated in OP samples. Additionally, 4 miRNAs were identified as potential regulators of DOCK4. The potential diagnostic value of DOCK4 and its two trans-regulatory lncRNAs was supported by ROC analysis, indicating their potential as biomarkers for OP. CONCLUSION: DOCK4 is a potential biomarker for elderly osteoporosis diagnostic. It is identified to be regulated by two lncRNAs and four miRNAs.


Asunto(s)
MicroARNs , Osteoporosis , ARN Largo no Codificante , Anciano , Humanos , ARN Largo no Codificante/genética , Biomarcadores , Bases de Datos Factuales , Osteoporosis/genética , Proteínas Activadoras de GTPasa
20.
J Chromatogr A ; 1720: 464822, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38502989

RESUMEN

α-Glucosidase plays a direct role in the metabolic pathways of starch and glycogen, any dysfunction in its activity could result in metabolic disease. Concurrently, this enzyme serves as a target for diverse drugs and inhibitors, contributing to the regulation of glucose metabolism in the human body. Here, an integrated analytical method was established to screen inhibitors of α-glucosidase. This step-by-step screening model was accomplished through the biosensing and affinity chromatography techniques. The newly proposed sensing program had a good linear relationship within the enzyme activity range of 0.25 U mL-1 to 1.25 U mL-1, which can quickly identify active ingredients in complex samples. Then the potential active ingredients can be captured, separated, and identified by an affinity chromatography model. The combination of the two parts was achieved by an immobilized enzyme technology and a microdevice for reaction, and the combination not only ensured efficiency and accuracy for inhibitor screening but also eliminated the occurrence of false positive results in the past. The emodin, with a notable inhibitory effect on α-glucosidase, was successfully screened from five traditional Chinese medicines using this method. The molecular docking results also demonstrated that emodin was well embedded into the active pocket of α-glucosidase. In summary, the strategy provided an efficient method for developing new enzyme inhibitors from natural products.


Asunto(s)
Emodina , Inhibidores de Glicósido Hidrolasas , Humanos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Cromatografía de Afinidad , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA