Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Biol Environ Stat ; 28(1): 1-19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779040

RESUMEN

In grassland ecosystems, it is well known that increasing plant species diversity can improve ecosystem functions (i.e., ecosystem responses), for example, by increasing productivity and reducing weed invasion. Diversity-Interactions models use species proportions and their interactions as predictors in a regression framework to assess biodiversity and ecosystem function relationships. However, it can be difficult to model numerous interactions if there are many species, and interactions may be temporally variable or dependent on spatial planting patterns. We developed a new Diversity-Interactions mixed model for jointly assessing many species interactions and within-plot species planting pattern over multiple years. We model pairwise interactions using a small number of fixed parameters that incorporate spatial effects and supplement this by including all pairwise interaction variables as random effects, each constrained to have the same variance within each year. The random effects are indexed by pairs of species within plots rather than a plot-level factor as is typical in mixed models, and capture remaining variation due to pairwise species interactions parsimoniously. We apply our novel methodology to three years of weed invasion data from a 16-species grassland experiment that manipulated plant species diversity and spatial planting pattern and test its statistical properties in a simulation study.Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00505-2.

2.
Ecol Evol ; 9(21): 12171-12181, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31832151

RESUMEN

Biodiversity and Ecosystem Function analyses aim to explain how individual species and their interactions affect ecosystem function. With this study, we asked in what ways do species interact, are these interactions affected by species planting pattern, and are initial (planted) proportions or previous year (realized) proportions a better reference point for characterizing grassland diversity effects?We addressed these questions with experimental communities compiled from a pool of 16 tallgrass prairie species. We planted all species in monocultures and mixtures that varied in their species richness, evenness, and spatial pattern. We recorded species-specific biomass production over three growing seasons and fitted Diversity-Interactions (DI) models to annual plot biomass yields.In the establishment season, all species interacted equally to form the diversity effect. In years 2 and 3, each species contributed a unique additive coefficient to its interaction with every other species to form the diversity effect. These interactions were affected by Helianthus maximiliani and the species planting pattern. Models based on species planted proportions better-fit annual plot yield than models based on species previous contributions to plot biomass.Outcomes suggest that efforts to plant tallgrass prairies to maximize diversity effects should focus on the specific species present and in what arrangement they are planted. Furthermore, for particularly diverse grasslands, the effort of collecting annual species biomass data may not be necessary when quantifying diversity effects with DI models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA