Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39062647

RESUMEN

Drought is a destructive abiotic stress that affects all critical stages of peanut growth such as emergence, flowering, pegging, and pod filling. The development of a drought-tolerant variety is a sustainable strategy for long-term peanut production. The U.S. mini-core peanut germplasm collection was evaluated for drought tolerance to the middle-season drought treatment phenotyping for pod weight, pod count, relative water content (RWC), specific leaf area (SLA), leaf dry matter content (LDMC), and drought rating. A genome-wide association study (GWAS) was performed to identify minor and major QTLs. A total of 144 QTLs were identified, including 18 significant QTLs in proximity to 317 candidate genes. Ten significant QTLs on linkage groups (LGs) A03, A05, A06, A07, A08, B04, B05, B06, B09, and B10 were associated with pod weight and pod count. RWC stages 1 and 2 were correlated with pod weight, pod count, and drought rating. Six significant QTLs on LGs A04, A07, B03, and B04 were associated with RWC stages 1 and 2. Drought rating was negatively correlated with pod yield and pod count and was associated with a significant QTL on LG A06. Many QTLs identified in this research are novel for the evaluated traits, with verification that the pod weight shared a significant QTL on chromosome B06 identified in other research. Identified SNP markers and the associated candidate genes provide a resource for molecular marker development. Verification of candidate genes surrounding significant QTLs will facilitate the application of marker-assisted peanut breeding for drought tolerance.


Asunto(s)
Arachis , Sequías , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Arachis/genética , Arachis/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Fenotipo , Estrés Fisiológico/genética , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple
2.
Front Plant Sci ; 15: 1342512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708395

RESUMEN

Carrot (Daucus carota L.) is a high value, nutritious, and colorful crop, but delivering carrots from seed to table can be a struggle for carrot growers. Weed competitive ability is a critical trait for crop success that carrot and its apiaceous relatives often lack owing to their characteristic slow shoot growth and erratic seedling emergence, even among genetically uniform lines. This study is the first field-based, multi-year experiment to evaluate shoot-growth trait variation over a 100-day growing season in a carrot diversity panel (N=695) that includes genetically diverse carrot accessions from the United States Department of Agriculture National Plant Germplasm System. We report phenotypic variability for shoot-growth characteristics, the first broad-sense heritability estimates for seedling emergence (0.68 < H2 < 0.80) and early-season canopy coverage ( 0.61 < H2 < 0.65), and consistent broad-sense heritability for late-season canopy height (0.76 < H2 < 0.82), indicating quantitative inheritance and potential for improvement through plant breeding. Strong correlation between emergence and canopy coverage (0.62 < r < 0.72) suggests that improvement of seedling emergence has great potential to increase yield and weed competitive ability. Accessions with high emergence and vigorous canopy growth are of immediate use to breeders targeting stand establishment, weed-tolerance, or weed-suppressant carrots, which is of particular advantage to the organic carrot production sector, reducing the costs and labor associated with herbicide application and weeding. We developed a standardized vocabulary and protocol to describe shoot-growth and facilitate collaboration and communication across carrot research groups. Our study facilitates identification and utilization of carrot genetic resources, conservation of agrobiodiversity, and development of breeding stocks for weed-competitive ability, with the long-term goal of delivering improved carrot cultivars to breeders, growers, and consumers. Accession selection can be further optimized for efficient breeding by combining shoot growth data with phenological data in this study's companion paper to identify ideotypes based on global market needs.

3.
Genes Brain Behav ; 23(2): e12894, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38597363

RESUMEN

Opioid use disorder (OUD) is an ongoing public health concern in the United States, and relatively little work has addressed how genetic background contributes to OUD. Understanding the genetic contributions to oxycodone-induced analgesia could provide insight into the early stages of OUD development. Here, we present findings from a behavioral phenotyping protocol using several inbred strains from the Hybrid Rat Diversity Panel. Our behavioral protocol included a modified "up-down" von Frey procedure to measure inherent strain differences in the sensitivity to a mechanical stimulus on the hindpaw. We also performed the tail immersion assay, which measures the latency to display tail withdrawal in response to a hot water bath. Initial withdrawal thresholds were taken in drug-naïve animals to record baseline thermal sensitivity across the strains. Oxycodone-induced analgesia was measured after administration of oxycodone over the course of 2 h. Both mechanical and thermal sensitivity are shaped by genetic factors and display moderate heritability (h2 = 0.23-0.40). All strains displayed oxycodone-induced analgesia that peaked at 15-30 min and returned to baseline by 2 h. There were significant differences between the strains in the magnitude and duration of their analgesic response to oxycodone, although the heritability estimates were quite modest (h2 = 0.10-0.15). These data demonstrate that genetic background confers differences in mechanical sensitivity, thermal sensitivity, and oxycodone-induced analgesia.


Asunto(s)
Analgesia , Trastornos Relacionados con Opioides , Ratas , Animales , Oxicodona/farmacología , Analgésicos Opioides/farmacología
4.
Front Plant Sci ; 15: 1348014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510437

RESUMEN

Faba bean (Vicia faba L.) is a legume crop grown in diverse climates worldwide. It has a high potential for increased cultivation to meet the need for more plant-based proteins in human diets, a prerequisite for a more sustainable food production system. Characterization of diversity panels of crops can identify variation in and genetic markers for target traits of interest for plant breeding. In this work, we collected a diversity panel of 220 accessions of faba bean from around the world consisting of gene bank material and commercially available cultivars. The aims of this study were to quantify the phenotypic diversity in target traits to analyze the impact of breeding on these traits, and to identify genetic markers associated with traits through a genome-wide association study (GWAS). Characterization under field conditions at Nordic latitude across two years revealed a large genotypic variation and high broad-sense heritability for eleven agronomic and seed quality traits. Pairwise correlations showed that seed yield was positively correlated to plant height, number of seeds per plant, and days to maturity. Further, susceptibility to bean weevil damage was significantly higher for early flowering accessions and accessions with larger seeds. In this study, no yield penalty was found for higher seed protein content, but protein content was negatively correlated to starch content. Our results showed that while breeding advances in faba bean germplasm have resulted in increased yields and number of seeds per plant, they have also led to a selection pressure towards delayed onset of flowering and maturity. DArTseq genotyping identified 6,606 single nucleotide polymorphisms (SNPs) by alignment to the faba bean reference genome. These SNPs were used in a GWAS, revealing 51 novel SNP markers significantly associated with ten of the assessed traits. Three markers for days to flowering were found in predicted genes encoding proteins for which homologs in other plant species regulate flowering. Altogether, this work enriches the growing pool of phenotypic and genotypic data on faba bean as a valuable resource for developing efficient breeding strategies to expand crop cultivation.

5.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537634

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Asunto(s)
Genoma , Genómica , Ratas , Animales , Genoma/genética , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma , Variación Genética/genética
6.
Front Genet ; 15: 1330361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380426

RESUMEN

Dry bean is a nutrient-dense food targeted in biofortification programs to increase seed iron and zinc levels. The underlying assumption of breeding for higher mineral content is that enhanced iron and zinc levels will deliver health benefits to the consumers of these biofortified foods. This study characterized a diversity panel of 275 genotypes comprising the Yellow Bean Collection (YBC) for seed Fe and Zn concentration, Fe bioavailability (FeBio), and seed yield across 2 years in two field locations. The genetic architecture of each trait was elucidated via genome-wide association studies (GWAS) and the efficacy of genomic prediction (GP) was assessed. Moreover, 82 yellow breeding lines were evaluated for seed Fe and Zn concentrations as well as seed yield, serving as a prediction set for GP models. Large phenotypic variability was identified in all traits evaluated, and variations of up to 2.8 and 13.7-fold were observed for Fe concentration and FeBio, respectively. Prediction accuracies in the YBC ranged from a low of 0.12 for Fe concentration, to a high of 0.72 for FeBio, and an accuracy improvement of 0.03 was observed when a QTN, identified through GWAS, was used as a fixed effect for FeBio. This study provides evidence of the lack of correlation between FeBio estimated in vitro and Fe concentration and highlights the potential of GP in accurately predicting FeBio in yellow beans, offering a cost-effective alternative to the traditional assessment of using Caco2 cell methodologies.

7.
BMC Res Notes ; 17(1): 33, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263080

RESUMEN

OBJECTIVES: Phenotyping plants in a field environment can involve a variety of methods including the use of automated instruments and labor-intensive manual measurement and scoring. Researchers also collect language-based phenotypic descriptions and use controlled vocabularies and structures such as ontologies to enable computation on descriptive phenotype data, including methods to determine phenotypic similarities. In this study, spoken descriptions of plants were collected and observers were instructed to use their own vocabulary to describe plant features that were present and visible. Further, these plants were measured and scored manually as part of a larger study to investigate whether spoken plant descriptions can be used to recover known biological phenomena. DATA DESCRIPTION: Data comprise phenotypic observations of 686 accessions of the maize Wisconsin Diversity panel, and 25 positive control accessions that carry visible, dramatic phenotypes. The data include the list of accessions planted, field layout, data collection procedures, student participants' (whose personal data are protected for ethical reasons) and volunteers' observation transcripts, volunteers' audio data files, terrestrial and aerial images of the plants, Amazon Web Services method selection experimental data, and manually collected phenotypes (e.g., plant height, ear and tassel features, etc.; measurements and scores). Data were collected during the summer of 2021 at Iowa State University's Agricultural Engineering and Agronomy Research Farms.


Asunto(s)
Agricultura , Humanos , Wisconsin , Recolección de Datos , Granjas , Fenotipo
8.
Trends Genet ; 40(3): 228-237, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38161109

RESUMEN

Age-related hearing loss (ARHL) is a prevalent concern in the elderly population. Recent genome-wide and phenome-wide association studies (GWASs and PheWASs) have delved into the identification of causative variants and the understanding of pleiotropy, highlighting the polygenic intricacies of this complex condition. While recent large-scale GWASs have pinpointed significant SNPs and risk variants associated with ARHL, the detailed mechanisms, encompassing both genetic and epigenetic modifications, remain to be fully elucidated. This review presents the latest advances in association studies, integrating findings from both human studies and model organisms. By juxtaposing historical perspectives with contemporary genomics, we aim to catalyze innovative research and foster the development of novel therapeutic strategies for ARHL.


Asunto(s)
Presbiacusia , Humanos , Anciano , Presbiacusia/genética , Presbiacusia/epidemiología , Polimorfismo de Nucleótido Simple/genética
9.
Front Plant Sci ; 14: 1190358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680355

RESUMEN

Fusarium head blight (FHB) is one the most globally destructive fungal diseases in wheat and other small grains, causing a reduction in grain yield by 10-70%. The present study was conducted in a panel of historical and modern Canadian spring wheat (Triticum aestivum L.) varieties and lines to identify new sources of FHB resistance and map associated quantitative trait loci (QTLs). We evaluated 249 varieties and lines for reaction to disease incidence, severity, and visual rating index (VRI) in seven environments by artificially spraying a mixture of four Fusarium graminearum isolates. A subset of 198 them were genotyped with the Wheat 90K iSelect single nucleotide polymorphisms (SNPs) array. Genome-wide association mapping performed on the overall best linear unbiased estimators (BLUE) computed from all seven environments and the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map of 26,449 polymorphic SNPs out of the 90K identified sixteen FHB resistance QTLs that individually accounted for 5.7-10.2% of the phenotypic variance. The positions of two of the FHB resistance QTLs overlapped with plant height and flowering time QTLs. Four of the QTLs (QFhb.dms-3B.1, QFhb.dms-5A.5, QFhb.dms-5A.7, and QFhb.dms-6A.4) were simultaneously associated with disease incidence, severity, and VRI, which accounted for 27.0-33.2% of the total phenotypic variance in the combined environments. Three of the QTLs (QFhb.dms-2A.2, QFhb.dms-2D.2, and QFhb.dms-5B.8) were associated with both incidence and VRI and accounted for 20.5-22.1% of the total phenotypic variance. In comparison with the VRI of the checks, we identified four highly resistant and thirty-three moderately resistant lines and varieties. The new FHB sources of resistance and the physical map of the associated QTLs would provide wheat breeders valuable information towards their efforts in developing improved varieties in western Canada.

10.
Front Plant Sci ; 14: 1172816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377815

RESUMEN

Dry direct-seeded rice (dry-DSR) is typically sown deeply to circumvent the need for irrigation, and thus seedling emergence is a crucial trait affecting plant stand and yield. To breed elite cultivars that use less water and are climate-resilient, an understanding of the genomic regions and underlying genes that confer emergence in deeply sown dry-DSR would be highly advantageous. A combined diversity panel of 470 rice accessions (RDP1 plus aus subset of 3K RGP) was evaluated with 2.9 million single nucleotide polymorphisms (SNPs) to identify associations with dry-DSR traits in the field and component traits in a controlled-environment experiment. Using genome-wide association study (GWAS) analyses, we identified 18 unique QTLs on chromosomes 1, 2, 4, 5, 6, 7, 9, 10, and 11, explaining phenotypic variance ranging from 2.6% to 17.8%. Three QTLs, namely, qSOE-1.1, qEMERG-AUS-1.2, and qEMERG-AUS-7.1, were co-located with previously reported QTLs for mesocotyl length. Among the identified QTLs, half were associated with the emergence of aus, and six were unique to the aus genetic group. Based on functional annotation, we identified eleven compelling candidate genes that primarily regulate phytohormone pathways such as cytokinin, auxin, gibberellic acid, and jasmonic acid. Prior studies indicated that these phytohormones play a critical role in mesocotyl length under deep sowing. This study provides new insight into the importance of aus and indica as desirable genetic resources to mine favorable alleles for deep-sowing tolerance in rice. The candidate genes and marker-tagged desirable alleles identified in this study should benefit rice breeding programs directly.

11.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37214860

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.

12.
Front Plant Sci ; 14: 1145371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998679

RESUMEN

Introduction: Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods: We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results: Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion: The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.

13.
Elife ; 122023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000167

RESUMEN

Cardiometabolic diseases encompass a range of interrelated conditions that arise from underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiometabolic diseases, individuals still present in the absence of such traditional risk factors, making it difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic, environmental, and molecular underpinnings to better understand, diagnose, and treat cardiometabolic diseases. Much of this information can be garnered using systems genetics, which takes population-based approaches to investigate how genetic variance contributes to complex traits. Despite the important advances made by human genome-wide association studies (GWAS) in this space, corroboration of these findings has been hampered by limitations including the inability to control environmental influence, limited access to pertinent metabolic tissues, and often, poor classification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic variation in a controlled environment. Here, we review mouse genetic reference panels and the opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to understanding gene function. Finally, we highlight key advantages and challenges of integrating complementary genetic and multi-omics data from human and mouse populations to advance biological discovery.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Animales , Humanos , Ratones , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Fenotipo , Factores de Riesgo
14.
Plant J ; 113(6): 1109-1121, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36705476

RESUMEN

Maize (Zea mays ssp. mays) populations exhibit vast ranges of genetic and phenotypic diversity. As sequencing costs have declined, an increasing number of projects have sought to measure genetic differences between and within maize populations using whole-genome resequencing strategies, identifying millions of segregating single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older genotyping strategies like microarrays and genotyping by sequencing, resequencing should, in principle, frequently identify and score common genetic variants. However, in practice, different projects frequently employ different analytical pipelines, often employ different reference genome assemblies and consistently filter for minor allele frequency within the study population. This constrains the potential to reuse and remix data on genetic diversity generated from different projects to address new biological questions in new ways. Here, we employ resequencing data from 1276 previously published maize samples and 239 newly resequenced maize samples to generate a single unified marker set of approximately 366 million segregating variants and approximately 46 million high-confidence variants scored across crop wild relatives, landraces as well as tropical and temperate lines from different breeding eras. We demonstrate that the new variant set provides increased power to identify known causal flowering-time genes using previously published trait data sets, as well as the potential to track changes in the frequency of functionally distinct alleles across the global distribution of modern maize.


Asunto(s)
Fitomejoramiento , Zea mays , Humanos , Marcadores Genéticos/genética , Zea mays/genética , Frecuencia de los Genes/genética , Polimorfismo de Nucleótido Simple/genética
15.
Appl Plant Sci ; 10(6): e11504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518946

RESUMEN

Premise: The agar-based culture of Arabidopsis seedlings is widely used for quantifying root traits. Shoot traits are generally overlooked in these studies, probably because the rosettes are often askew. A technique to assess the shoot surface area of seedlings grown inside agar culture dishes would facilitate simultaneous root and shoot phenotyping. Methods: We developed an image processing workflow in Python that estimates rosette area of Arabidopsis seedlings on agar culture dishes. We validated this method by comparing its output with other metrics of seedling growth. As part of a larger study on genetic variation in plant responses to nitrogen form and concentration, we measured the rosette areas from more than 2000 plate images. Results: The rosette area measured from plate images was strongly correlated with the rosette area measured from directly overhead and moderately correlated with seedling mass. Rosette area in the large image set was significantly influenced by genotype and nitrogen treatment. The broad-sense heritability of leaf area measured using this method was 0.28. Discussion: These results indicated that this approach for estimating rosette area produces accurate shoot phenotype data. It can be used with image sets for which other methods of leaf area quantification prove unsuitable.

16.
Front Plant Sci ; 13: 1038079, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438141

RESUMEN

Seed color is a vital quality determinant of flax, significant for consumers' acceptability, and determines the commercial values of seeds. Also, seed color as a phenotypic marker may be a convenient way to select the plants with desired traits. This study assessed a diversity panel representing 144 flax genotypes from diverse geographical origins for the existence of genetic variability for luminosity (L*) and chromaticity (a* and b*) seed color parameters, seed yield, and quality traits over two years. The genetic variance was significant for seed color parameters, demonstrating the presence of significant genetic variability, which provides a resource to objectively evaluate and select flax genotypes based on seed color according to the market demand. High heritability combined with the high genotypic coefficient of variation observed for seed yield, oil, and protein content suggested a better genetic gain upon selecting these traits. Seed yield, seed quality traits, and phenological traits showed significant negative correlation with L* and b* parameters and positive correlation with a* suggesting that the seeds' dark background and brown color can serve as marker characters to prescreen early-flowering, high-yielding and oil and protein-rich genotypes. Interestingly 48 brown-seeded genotypes were identified as early-flowering with short height, large seeds, high thousand seed weight, and capsule diameter. In addition, 34 genotypes were characterized by light-colored yellow seeds, large seeds, late-flowering with shorter height, and high branch numbers. Our results highlighted that North America and Australia-belonged genotypes were lighter yellow-seeded than the ones from other continents. Flax genotypes from South America and Asia were high-yielding, while genotypes from North America were low-yielding genotypes. Moreover, darker brown-seeded genotypes have prevailed in the South American continent.

17.
Front Genet ; 13: 947423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186443

RESUMEN

The Hybrid Rat Diversity Panel (HRDP) is a stable and well-characterized set of more than 90 inbred rat strains that can be leveraged for systems genetics approaches to understanding the genetic and genomic variation associated with complex disease. The HRDP exhibits substantial between-strain diversity while retaining substantial within-strain isogenicity, allowing for the precise mapping of genetic variation associated with complex phenotypes and providing statistical power to identify associated variants. In order to robustly identify associated genetic variants, it is important to account for the population structure induced by inbreeding. To this end, we investigate the performance of four plausible approaches towards modeling quantitative traits in the HRDP and quantify their operating characteristics. In particular, we investigate three approaches based on genome-wide mixed model analysis, and one approach based on ordinary least squares linear regression. Towards facilitating study planning and design, we conduct extensive simulations to investigate the power of genetic association analyses in the HRDP, and characterize the impressive attained power. In simulation of eQTL data in the HRDP, we find that a mixed model approach that leverages leave-one-chromosome-out kinship estimation attains the highest power while controlling type I error.

18.
Theor Appl Genet ; 135(9): 3103-3115, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896689

RESUMEN

KEY MESSAGE: Association mapping and phenotypic analysis of a diversity panel of 238 bread wheat accessions highlights differences in resistance against common vs. dwarf bunt and identifies genotypes valuable for bi-parental crosses. Common bunt caused by Tilletia caries and T. laevis was successfully controlled by seed dressings with systemic fungicides for decades, but has become a renewed threat to wheat yield and quality in organic agriculture where such treatments are forbidden. As the most efficient way to address this problem is the use of resistant cultivars, this study aims to broaden the spectrum of resistance sources available for breeders by identifying resistance loci against common bunt in bread wheat accessions of the USDA National Small Grains Collection. We conducted three years of artificially inoculated field trials to assess common bunt infection levels in a diversity panel comprising 238 wheat accessions for which data on resistance against the closely related pathogen Tilletia controversa causing dwarf bunt was already available. Resistance levels against common bunt were higher compared to dwarf bunt with 99 accessions showing [Formula: see text] 1% incidence. Genome-wide association mapping identified six markers significantly associated with common bunt incidence in regions already known to confer resistance on chromosomes 1A and 1B and novel loci on 2B and 7A. Our results show that resistance against common and dwarf bunt is not necessarily controlled by the same loci but we identified twenty accessions with high resistance against both diseases. These represent valuable new resources for research and breeding programs since several bunt races have already been reported to overcome known resistance genes.


Asunto(s)
Basidiomycota , Fungicidas Industriales , Pan , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Estados Unidos , United States Department of Agriculture
19.
Plant J ; 111(3): 888-904, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35653240

RESUMEN

Association mapping panels represent foundational resources for understanding the genetic basis of phenotypic diversity and serve to advance plant breeding by exploring genetic variation across diverse accessions. We report the whole-genome sequencing (WGS) of 400 sorghum (Sorghum bicolor (L.) Moench) accessions from the Sorghum Association Panel (SAP) at an average coverage of 38× (25-72×), enabling the development of a high-density genomic marker set of 43 983 694 variants including single-nucleotide polymorphisms (approximately 38 million), insertions/deletions (indels) (approximately 5 million), and copy number variants (CNVs) (approximately 170 000). We observe slightly more deletions among indels and a much higher prevalence of deletions among CNVs compared to insertions. This new marker set enabled the identification of several novel putative genomic associations for plant height and tannin content, which were not identified when using previous lower-density marker sets. WGS identified and scored variants in 5-kb bins where available genotyping-by-sequencing (GBS) data captured no variants, with half of all bins in the genome falling into this category. The predictive ability of genomic best unbiased linear predictor (GBLUP) models was increased by an average of 30% by using WGS markers rather than GBS markers. We identified 18 selection peaks across subpopulations that formed due to evolutionary divergence during domestication, and we found six Fst peaks resulting from comparisons between converted lines and breeding lines within the SAP that were distinct from the peaks associated with historic selection. This population has served and continues to serve as a significant public resource for sorghum research and demonstrates the value of improving upon existing genomic resources.


Asunto(s)
Sorghum , Grano Comestible/genética , Genoma , Estudio de Asociación del Genoma Completo , Genómica/métodos , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Sorghum/genética
20.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628477

RESUMEN

Rice blast is one of the main diseases in rice and can occur in different rice growth stages. Due to the complicated procedure of panicle blast identification and instability of panicle blast infection influenced by the environment, most cloned rice resistance genes are associated with leaf blast. In this study, a rice panicle blast resistance gene, Pb2, was identified by genome-wide association mapping based on the panicle blast resistance phenotypes of 230 Rice Diversity Panel 1 (RDP1) accessions with 700,000 single-nucleotide polymorphism (SNP) markers. A genome-wide association study identified 18 panicle blast resistance loci (PBRL) within two years, including 9 reported loci and 2 repeated loci (PBRL2 and PBRL13, PBRL10 and PBRL18). Among them, the repeated locus (PBRL10 and PBRL18) was located in chromosome 11. By haplotype and expression analysis, one of the Nucleotide-binding domain and Leucine-rich Repeat (NLR) Pb2 genes was highly conserved in multiple resistant rice cultivars, and its expression was significantly upregulated after rice blast infection. Pb2 encodes a typical NBS-LRR protein with NB-ARC domain and LRR domain. Compared with wild type plants, the transgenic rice of Pb2 showed enhanced resistance to panicle and leaf blast with reduced lesion number. Subcellular localization of Pb2 showed that it is located on plasma membrane, and GUS tissue-staining observation found that Pb2 is highly expressed in grains, leaf tips and stem nodes. The Pb2 transgenic plants showed no difference in agronomic traits with wild type plants. It indicated that Pb2 could be useful for breeding of rice blast resistance.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Plomo/metabolismo , Magnaporthe/genética , Proteínas NLR/metabolismo , Nucleótidos/metabolismo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA