Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
FASEB J ; 37(3): e22806, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786722

RESUMEN

Recent studies already confirmed that placenta mitochondrial dysfunction is associated with the progression of gestational diabetes mellitus (GDM). Besides, a possible relationship between adipokine chemerin and disulfide-bond A oxidoreductase-like protein (DsbA-L) had been revealed, whereas the potential interaction remains unclear. In addition, very little is still known about the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and its mechanisms of action in the context of GDM. The present study aims to investigate the underlying mechanism of cGAS-STING pathway and its regulatory relationship with chemerin in GDM. A total of 50 participants, including 25 cases of GDM patients and 25 pregnant women with normal glucose tolerance, were enrolled, and their placenta tissues at term labor were collected. Besides, an insulin resistance cell model was established on the human trophoblastic cell line to explore the molecular mechanism of chemerin on cGAS-STING pathway. Results showed that there were mitochondrial pathological changes in GDM placenta, accompanied by the decreased expression of DsbA-L, increased level of chemerin, and the activation of cGAS-STING pathway. In the insulin resistant cell model, overexpression of chemerin upregulated protein expression of DsbA-L, and recombinant chemerin presented time-dependent inhibition on the cGAS-STING pathway, but this effect was not dependent on DsbA-L. In conclusion, elevated chemerin is probably a protective mechanism, which may be a potential therapeutic strategy for GDM.


Asunto(s)
Diabetes Gestacional , Femenino , Humanos , Embarazo , Adipoquinas , Diabetes Gestacional/metabolismo , Nucleotidiltransferasas/metabolismo , Placenta/metabolismo , Transducción de Señal
2.
J Zhejiang Univ Sci B ; 21(12): 990-998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33843164

RESUMEN

Disulfide-bond A oxidoreductase-like protein (DsbA-L) is a molecular chaperone involved in the multimerization of adiponectin. Recent studies have found that DsbA-L is related to metabolic diseases including gestational diabetes mellitus (GDM), and can be regulated by peroxisome proliferator-activated receptor γ (PPARγ) agonists; the specific mechanism, however, is uncertain. Furthermore, the relationship between DsbA-L and the novel adipokine chemerin is also unclear. This article aims to investigate the role of DsbA-L in the improvement of insulin resistance by PPARγ agonists in trophoblast cells cultured by the high-glucose simulation of GDM placenta. Immunohistochemistry and western blot were used to detect differences between GDM patients and normal pregnant women in DsbA-L expression in the adipose tissue. The western blot technique was performed to verify the relationship between PPARγ agonists and DsbA-L, and to explore changes in key molecules of the insulin signaling pathway, as well as the effect of chemerin on DsbA-L. Results showed that DsbA-L was significantly downregulated in the adipose tissue of GDM patients. Both PPARγ agonists and chemerin could upregulate the level of DsbA-L. Silencing DsbA-L affected the function of rosiglitazone to promote the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/AKT pathway. Therefore, it is plausible to speculate that DsbA-L is essential in the environment of PPARγ agonists for raising insulin sensitivity. Overall, we further clarified the mechanism by which PPARγ agonists improve insulin resistance.


Asunto(s)
Diabetes Gestacional/metabolismo , Glutatión Transferasa/fisiología , Resistencia a la Insulina , PPAR gamma/agonistas , Adulto , Células Cultivadas , Quimiocinas/farmacología , Femenino , Glutatión Transferasa/genética , Humanos , PPAR gamma/fisiología , Embarazo , Grasa Subcutánea/metabolismo
3.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-846919

RESUMEN

Disulfide-bond A oxidoreductase-like protein (DsbA-L) is a molecular chaperone involved in the multimerization of adiponectin. Recent studies have found that DsbA-L is related to metabolic diseases including gestational diabetes mellitus (GDM), and can be regulated by peroxisome proliferator-activated receptor γ (PPARγ) agonists; the specific mechanism, however, is uncertain. Furthermore, the relationship between DsbA-L and the novel adipokine chemerin is also unclear. This article aims to investigate the role of DsbA-L in the improvement of insulin resistance by PPARγ agonists in trophoblast cells cultured by the high-glucose simulation of GDM placenta. Immunohistochemistry and western blot were used to detect differences between GDM patients and normal pregnant women in DsbA-L expression in the adipose tissue. The western blot technique was performed to verify the relationship between PPARγ agonists and DsbA-L, and to explore changes in key molecules of the insulin signaling pathway, as well as the effect of chemerin on DsbA-L. Results showed that DsbA-L was significantly downregulated in the adipose tissue of GDM patients. Both PPARγ agonists and chemerin could upregulate the level of DsbA-L. Silencing DsbA-L affected the function of rosiglitazone to promote the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/AKT pathway. Therefore, it is plausible to speculate that DsbA-L is essential in the environment of PPARγ agonists for raising insulin sensitivity. Overall, we further clarified the mechanism by which PPARγ agonists improve insulin resistance.

4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-880740

RESUMEN

Disulfide-bond A oxidoreductase-like protein (DsbA-L) is a molecular chaperone involved in the multimerization of adiponectin. Recent studies have found that DsbA-L is related to metabolic diseases including gestational diabetes mellitus (GDM), and can be regulated by peroxisome proliferator-activated receptor γ (PPARγ) agonists; the specific mechanism, however, is uncertain. Furthermore, the relationship between DsbA-L and the novel adipokine chemerin is also unclear. This article aims to investigate the role of DsbA-L in the improvement of insulin resistance by PPARγ agonists in trophoblast cells cultured by the high-glucose simulation of GDM placenta. Immunohistochemistry and western blot were used to detect differences between GDM patients and normal pregnant women in DsbA-L expression in the adipose tissue. The western blot technique was performed to verify the relationship between PPARγ agonists and DsbA-L, and to explore changes in key molecules of the insulin signaling pathway, as well as the effect of chemerin on DsbA-L. Results showed that DsbA-L was significantly downregulated in the adipose tissue of GDM patients. Both PPARγ agonists and chemerin could upregulate the level of DsbA-L. Silencing DsbA-L affected the function of rosiglitazone to promote the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/AKT pathway. Therefore, it is plausible to speculate that DsbA-L is essential in the environment of PPARγ agonists for raising insulin sensitivity. Overall, we further clarified the mechanism by which PPARγ agonists improve insulin resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA