Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mycotoxin Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073509

RESUMEN

Aflatoxin B1 (AFB1) is among the most potent genotoxic and carcinogenic mycotoxins and is a major source of distress for the growing poultry sector. On the other hand, distillery yeast sludge or distillery sludge (DS) is a byproduct of molasses-based industries. It is often treated as a waste despite containing abundant nutrients particularly protein, basic amino acids, and vitamins along with other macro and micronutrients. This study was designed to investigate the oxidative stress and immunological alterations induced by AFB1 and their amelioration by dietary supplementation with DS. For this purpose, 360 newly hatched broiler chicks were randomly divided into twelve groups (30 birds each) and fed different combinations of AFB1 (100, 200, or 600 µg/kg) and DS (5 or 10 g/kg) for 42 days. The parameters under consideration were body weight, feed conversion ratio (FCR), relative organ weights, histopathological examination of different visceral organs, total antioxidant capacity, antibody response to intravenous injection of sheep red blood cells, in situ lymphoproliferative response to phytohemagglutinin-P, and phagocytic potential through a carbon clearance assay system. The results of this study established that DS supplementation ameliorated AFB1-associated oxidative stress and ameliorated toxicopathological and immunological anomalies in groups given AFB1 at 100 µg/kg and 200 µg/kg; however, little to no relief was observed in birds fed AFB1 at 600 µg/kg. The determination of the actual ratio of the AFB1 to the DS for substantiating the ameliorating effects requires further investigation.

2.
J Environ Manage ; 332: 117294, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36708597

RESUMEN

The aim of the study is to explore the potential rhizospheric bacterial communities associated with Cannabis sativa L. (Cannabis); growing on the complex pollutant-rich distillery sludge. Seven bacterial species were isolated, among which four potential bacterial species were characterized based on the 16s rRNA sequencing from the rhizosphere sludge of C. sativa; they are Bacillus thuringiensis (MW887525), Bacillus cereus (MW887524), Achromobacter denitrificans (MW886333), Bacillus subtilis (MW886231). The isolated bacteria showed PGPR attributes and potential for ligninolytic enzyme activity. Further, to correlate these bacteria with organic pollutants of sludge, the GC-MS analysis of fresh disposed distillery sludge and after growth of 30 and 60 days C. sativa was also analysed, which showed the conversion and disappearance of compounds by the activity of rhizospheric bacterial communities. Additionally, C. sativa showed a higher metal accumulation pattern of Fe (801.81 ± 0.123)> Cu (275.086 ± 0.069)> Zn (162.15 ± 0.085)> Mn (63.92 ± 0.093)> Pb (28.619 ± 0.192)> Ni (5.02 ± 0.078)> Cd (2.53 ± 0.085)> Cr (1.87 ± 0.079) mg kg -1 in their shoot, root followed by leaf. The plant also showed BCF >1 and TF > 1 for most of the metals. Thus, this showed the phytoextraction properties of C. sativa from distillery sludge polluted sites. The findings of this study will enable to understand the functional role of rhizospheric bacterial community for the detoxification and degradation of complex organometallic waste, and will thus aid in the development of adequate phytoremediation techniques for the eco-restoration of polluted industrial sites for sustainable development.


Asunto(s)
Cannabis , Contaminantes Ambientales , Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Cannabis/metabolismo , Contaminantes Ambientales/análisis , Aguas del Alcantarillado/análisis , ARN Ribosómico 16S , Contaminantes del Suelo/análisis , Suelo , Metales Pesados/análisis , Plantas/metabolismo , Bacillus subtilis/metabolismo
3.
Environ Pollut ; 292(Pt A): 118267, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34601036

RESUMEN

Distillery sludge is a major source of aquatic pollution, but little is known about their microbial community and their association with the organic and metal pollutants. Sugarcane molasses-based distillery is an important industry in India, although the waste is usually treated prior to disposal, the treatment is often inadequate. The adverse effects of the organic and metal pollutants in sugarcane molasses-based distillery sludge on the microbial biodiversity and abundance in the disposal site have not been elucidated. This study aims to address this gap of knowledge. Samples were collected from the discharge point, 1 and 2 km downstream (D1, D2, and D3, respectively) of a sugarcane distillery in Uttar Pradesh, India, and their physico-chemical properties characterised. Using QIIME, taxonomic assignment for the V3 and V4 hypervariable regions of 16 S rRNA was performed. The phyla Proteobacteria (28-39%), Firmicutes (20-28%), Bacteriodetes (9-10%), Actinobacteria (5-10%), Tenericutes (1-9%) and Patescibacteria (2%) were the predominant bacteria in all three sites. Euryechaeota, were detected in sites D1 and D2 (1-2%) but absent in D3. Spirochaetes (5%), Sinergistetes (2%) and Cloacimonetes (1%) were only detected in samples from site D1. Shannon, Simpson, Chao1, and Observed-species indices indicated that site D1 (10.18, 0.0013, 36706.55 and 45653.84, respectively) has higher bacterial diversity and richness than D2 (6.66, 0.0001, 25987.71 and 49655.89, respectively) and D3 (8.31, 0.002, 30345.53 and 30654.88, respectively), suggesting the organic and metal pollutants provided the stressors to favour the survival of microbial community that can biodegrade and detoxify them in the distillery sludge. This study confirmed that the treatment of the distillery waste was not sufficiently effective and provided new metagenomic information on its impact on the surrounding microbial community. It also offered new insights into potential bioremediation candidates.


Asunto(s)
Contaminantes Ambientales , Microbiota , Saccharum , Melaza , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
4.
Environ Sci Pollut Res Int ; 28(27): 36742-36752, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33710486

RESUMEN

Combustion stands as one of the essential methods in resource recovery for disposal of distillery sludge. In this study, sludge along with coal has been considered an option for co-combustion in the grate furnace aiming for further application as a boiler fuel. Detailed analysis was carried out to verify the feasibility of co-combustion of sludge with coal. Distillery sludge was blended with coal as a mixed fuel at co-combustion ratios of 20%, 30%, and 40% in grate furnace. The results of the analysis indicated that the combustion with 40% sludge mixed coal is suitable for application as a fuel in boiler. According to the chemical composition of bottom ash, weight loss from 460 to 800°C indicated the presence of C-C and C-H. Also, EDX and XRD analyses of mixed fuel was carried out to determine the mineralogical composition. The presence of quartz (SiO2), mullite (3Al2O32SiO2), and hematite (Fe2O3) present in the ash can be used as mineral additives in cement industries. The study also provided a promising approach towards diverting combustion bottom ash from landfills for its utilization in various industries which can be a possible cost-effective solution.


Asunto(s)
Ceniza del Carbón , Carbón Mineral , Carbón Mineral/análisis , Ceniza del Carbón/análisis , Incineración , Aguas del Alcantarillado , Dióxido de Silicio
5.
Chemosphere ; 263: 128225, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297181

RESUMEN

Distillery sludge generated from the alcohol production plants is considered as a nuisance. It is one of the main sources of environmental pollution because of the presence of high amount of sulphate, phenolic compounds (500.3 ± 26.46 mg/kg), melanoidins, organic matter (14%) and heavy metals (like 18% Mn, 6% Ni and 4% Pb). Hence, advancement in the available techniques for managing this sludge is a prerequisite for its safe and sustainable disposal. The article delivers an assessment of the challenges involved in the treatment of distillery sludge, existing practices, disposal and possible routes for energy recovery. Considering the high nutritional and energy values of the distillery sludge, the associated limitations and challenges of the available sludge management options, it was aimed to highlight alternative methods of its treatment. The present review also compares the current distillery sludge management solutions concerning their environmental sustainability. The most widely used methods, including treatment and disposal techniques considering the current legislation in different countries, have also been dealt with. Furthermore, the study also deals with the resource recovery approaches in order to recover value-added products and available nutrients from distillery sludge. Resource and energy recovery options are therefore considered as sustainable solutions to fulfill the present and future energy requirement and visualize it as a potential opportunity instead of a nuisance.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Contaminación Ambiental , Metales Pesados/análisis , Eliminación de Residuos Líquidos
6.
3 Biotech ; 10(7): 316, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32612900

RESUMEN

The present paper aims to explore the rhizospheric bacterial communities associated with Saccharum arundinaceum grown on organometallic pollutants-rich hazardous distillery sludge. The sequence analysis of 16S rRNA V3-V4 hypervariable region with Illumina MiSeq platform showed 621,897 OTUs derived from rhizospheric and non-rhizospheric distillery sludge samples out of 1,191,014 and 901,757 sequences read, respectively. The major phyla detected in rhizospheric sludge sample were Proteobacteria (50%), Bacteriodetes (33%), Firmicutes (5%) Gemmatimonadetes (2%), Chloroflexi (2%), and Tenericutes (2%). The dominant three genera were detected as Rheinheimera (21%), Sphingobacterium (17%), and Idiomarina (8%). In addition, other minor genera such as uncultured Bacillus (4%), Acidothermus (4%), Bacillus (3%), Pseudomonas (2%), Flavobacterium (2%), uncultured bacterium (2%), Parapedobacter (2%), Alcanivorax (2%), Acholeplasma (2%), Hyphomonas (1%), and Aquamicrobium were also detected (1%) in rhizospheric sludge. Our results suggested that rhizospheric bacterial communities associated with S. arundinaceum were substantially different in richness, diversity, and relative abundance of taxa compared to non-rhizospheric sludge. Further, the comparative organic pollutant analysis from non-rhizospheric and rhizospheric sludge samples through GC-MS analysis revealed the disappearance of few compounds and generation of some compounds as new metabolic products by the activity of rhizospheric bacterial communities. The results of this study will be helpful in understanding the role of rhizospheric bacterial communities responsible for degradation and detoxification of complex organometallic waste and, thus, can help in designing appropriate phytoremediation studies for eco-restoration of polluted sites.

7.
Front Microbiol ; 8: 887, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28567033

RESUMEN

Sugarcane-molasses-based post-methanated distillery waste is well known for its toxicity, causing adverse effects on aquatic flora and fauna. Here, it has been demonstrated that there is an abundant mixture of androgenic and mutagenic compounds both in distillery sludge and leachate. Gas chromatography-mass spectrometry (GC-MS) analysis showed dodecanoic acid, octadecanoic acid, n-pentadecanoic acid, hexadecanoic acid, ß-sitosterol, stigmasterol, ß-sitosterol trimethyl ether, heptacosane, dotriacontane, lanosta-8, 24-dien-3-one, 1-methylene-3-methyl butanol, 1-phenyl-1-propanol, 5-methyl-2-(1-methylethyl) cyclohexanol, and 2-ethylthio-10-hydroxy-9-methoxy-1,4 anthraquinone as major organic pollutants along with heavy metals (all mg kg-1): Fe (2403), Zn (210.15), Mn (126.30, Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425). In a simultaneous analysis of bacterial communities using the restriction fragment length polymorphism (RFLP) method the dominance of Bacillus sp. followed by Enterococcus sp. as autochthonous bacterial communities growing in this extremely toxic environment was shown, indicating a primary community for bioremediation. A toxicity evaluation showed a reduction of toxicity in degraded samples of sludge and leachate, confirming the role of autochthonous bacterial communities in the bioremediation of distillery waste in situ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA