Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37904988

RESUMEN

Conventional dogma suggests that decompression sickness (DCS) is caused by nitrogen bubble nucleation in the blood vessels and/or tissues; however, the abundance of bubbles does not correlate with DCS severity. Since immune cells respond to chemical and environmental cues, we hypothesized that the elevated partial pressures of dissolved gases drive aberrant immune cell phenotypes in the alveolar vasculature. To test this hypothesis, we measured immune responses within human lung-on-a-chip devices established with primary alveolar cells and microvascular cells. Devices were pressurized to 1.0 or 3.5 atm and surrounded by normal alveolar air or oxygen-reduced air. Phenotyping of neutrophils, monocytes, and dendritic cells as well as multiplexed ELISA revealed that immune responses occur within 1 hour and that normal alveolar air (i.e., hyperbaric oxygen and nitrogen) confer greater immune activation. This work strongly suggests innate immune cell reactions initiated at elevated partial pressures contribute to the etiology of DCS.

2.
Bioresour Technol ; 364: 128072, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36229009

RESUMEN

In this research, the recovery of dissolved biogas (CO2/CH4) from synthetic anaerobic effluents was studied using non-porous, polydimethylsiloxane (PDMS), hollow-fibre gas-liquid membrane contactors towards the design of a reduced carbon-footprint integrated bioprocess. As a key parameter, the gas-to-liquid (G/L) ratio (employing argon as sweep gas) was systematically varied in the range of 0.5-2.0. The results showed on a 1 m2 PDMS module that increasing the liquid (effluent) flow rate favours the CH4 transport, while a higher sweep gas flow rate is preferable for the CO2 transport over CH4. Depending on the actual biogas composition and the CO2 content of the effluent, the methane recovery could be improved up to 63 % under steady-state conditions. In general, similar tendencies were observed when another PDMS membrane module with a smaller surface area (2 500 cm2) was applied hence, in this sense, the separation behaviour seems to be independent of the membrane size.

3.
Environ Sci Pollut Res Int ; 29(60): 90549-90566, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35871195

RESUMEN

Dissolved gases in the effluent of anaerobic reactors, specifically dissolved methane (D-CH4) and sulphide (S2-), are a drawback for anaerobic-based sewage treatment plants (STPs). This article studied the simultaneous desorption/removal of both gases from anaerobic effluents with hollow fibre membrane contactors (HFMCs), evaluating two types of membrane materials (e.g. microporous and dense) at different operating conditions (atmospheric air as sweeping gas or vacuum, and different gas/liquid flows and vacuum pressures). The transfer of other gases, such as O2 and CO2, was studied as well. Desorption/removal efficiencies up to 99% for D-CH4 and 100% for S2- were obtained, with the higher efficiencies reported for the dense HFMC and with air as sweeping gas. It was found that the removal mechanism for S2- was oxidation with O2 from the air. In addition, the use of air as sweeping gas allowed the obtention of a nearly O2 saturated effluent, with more elevated dissolved oxygen concentrations in the microporous HFMC. Finally, it was found that the higher mass-transfer resistance in the dense membrane was compensated by a better performance in the liquid phase (lower mass-transfer resistance) in this unit, which allowed better D-CH4 desorption efficiencies.


Asunto(s)
Metano , Sulfuros
4.
Sci Total Environ ; 848: 157485, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35870597

RESUMEN

Freshwater ecosystems are important contributors to the global greenhouse gas budget and a comprehensive assessment of their role in the context of global warming is essential. Despite many reports on freshwater ecosystems, relatively little attention has been given so far to those located in the southern hemisphere and our current knowledge is particularly poor regarding the methane cycle in non-perennially glaciated lakes of the maritime Antarctica. We conducted a high-resolution study of the methane and carbon dioxide cycle in a lake of the Fildes Peninsula, King George Island (Lat. 62°S), and a succinct characterization of 10 additional lakes and ponds of the region. The study, done during the ice-free and the ice-seasons, included methane and carbon dioxide exchanges with the atmosphere (both from water and surrounding soils) and the dissolved concentration of these two gases throughout the water column. This characterization was complemented with an ex-situ analysis of the microbial activities involved in the methane cycle, including methanotrophic and methanogenic activities as well as the methane-related marker gene abundance, in water, sediments and surrounding soils. The results showed that, over an annual cycle, the freshwater ecosystems of the region are dominantly autotrophic and that, despite low but omnipresent atmospheric methane emissions, they act as greenhouse gas sinks.


Asunto(s)
Gases de Efecto Invernadero , Lagos , Regiones Antárticas , Dióxido de Carbono/análisis , Ecosistema , Gases/análisis , Gases de Efecto Invernadero/análisis , Lagos/análisis , Metano/análisis , Suelo , Agua/análisis
5.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467187

RESUMEN

In order to find an excellent sensing material for dissolved gases in transformer oil, the adsorption structures of intrinsic graphene (IG), Ge-doped graphene (GeG), and Cr-doped graphene (CrG) to H2 and C2H2 gas molecules were built. It was found that the doping site right above C atom (T) was the most stable structure by studying three potential doping positions of the Ge and Cr atom on the graphene surface. Then, the structural parameters, density of states, and difference state density of these adsorption systems were calculated and analyzed based on the density functional calculations. The results show that the adsorption properties of GeG and CrG systems for H2 and C2H2 are obviously better than the IG system. Furthermore, by comparing the two doping systems, CrG system exhibits more outstanding adsorption performances to H2 and C2H2, especially for C2H2 gas. Finally, the highest adsorption energy (-1.436 eV) and the shortest adsorption distance (1.981 Å) indicate that Cr-doped graphene is promising in the field of C2H2 gas-sensing detection.

6.
Talanta ; 221: 121464, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076084

RESUMEN

A sandwich temperature control membrane inlet system based on a miniature mass spectrometer is presented that demonstrates improved analytical performance for the measurement of dissolved gases and volatile organic compounds (VOCs) in aqueous solution. Aqueous solution is directly brought to the monolayer flat membrane interface at a constant flow rate. A heating resistor and a thermocouple are fixed on the side of the membrane and aqueous solution respectively. This new strategy allows for a temperature compensation method, affording an improvement of sensitivity and a reduction of response time compared with the conventional heating solution temperature control strategy. Furthermore, a static heating mode is applied to effectively remove the memory effect. Automatic sampling and measurement are achieved by using the membrane inlet system with silicone sheeting of 50 µm thickness. The vacuum is below 3 × 10-5 Torr, which can make the instrument work normally. A good linear response is observed for benzene in the range of 0.1 ppm-10 ppm and the detection limit is 50 ppb. The analytical capacity of this system is demonstrated by the on-line analysis of VOCs in aqueous solution, in which the dominant ions are detected rapidly. The results indicate that the sandwich temperature control membrane inlet mass spectrometer (STC-MIMS) has a potential application for on-line analyzing organic pollution in aquatic environments.

7.
Ultrason Sonochem ; 72: 105422, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33383540

RESUMEN

Although most of researchers agree on the elementary reactions behind the sonolytic formation of molecular hydrogen (H2) from water, namely the radical attack of H2O and H2O2 and the free radicals recombination, several recent papers ignore the intervention of the dissolved gas molecules in the kinetic pathways of free radicals, and hence may wrongly assess the effect of dissolved gases on the sonochemical production of hydrogen. One may fairly ask to which extent is it acceptable to ignore the role of the dissolved gas and its eventual decomposition inside the acoustic cavitation bubble? The present opinion paper discusses numerically the ways in which the nature of dissolved gas, i.e., N2, O2, Ar and air, may influence the kinetics of sonochemical hydrogen formation. The model evaluates the extent of direct physical effects, i.e., dynamics of bubble oscillation and collapse events if any, against indirect chemical effects, i.e., the chemical reactions of free radicals formation and consequently hydrogen emergence, it demonstrates the improvement in the sonochemical hydrogen production under argon and sheds light on several misinterpretations reported in earlier works, due to wrong assumptions mainly related to initial conditions. The paper also highlights the role of dissolved gases in the nature of created cavitation and hence the eventual bubble population phenomena that may prevent the achievement of the sonochemical activity. This is particularly demonstrated experimentally using a 20 kHz Sinaptec transducer and a Photron SA 5 high speed camera, in the case of CO2-saturated water where degassing bubbles are formed instead of transient cavitation.

8.
ISA Trans ; 101: 390-398, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31959374

RESUMEN

In this work a fuzzy reinforcement learning (RL) based intelligent classifier for power transformer incipient faults is proposed. Fault classifiers proposed till date have low identification accuracy and do not identify all types of transformer faults. Herein, an attempt has been made to design an adaptive, intelligent transformer fault classifier that progressively learns to identify faults on-line with high accuracy for all fault types. In the proposed approach, dissolved gas analysis (DGA) data of oil samples collected from real power transformers (and from credible sources) has been used, which serves as input to a fuzzy RL based classifier. Typically, classification accuracy is heavily dependent on the number of input variables chosen. This has been resolved by using the J48 algorithm to select 8 most appropriate input variables from the 24 variables obtained using DGA. Proposed fuzzy RL approach achieves a fault identification accuracy of 99.7%, which is significantly higher than other contemporary soft computing based identifiers. Experimental results and comparison with other state-of-the-art approaches, highlights superiority and efficacy of the proposed fuzzy RL technique for transformer fault classification.

9.
Nanomaterials (Basel) ; 9(12)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817995

RESUMEN

Hexagonal-Boron nitride nanotubes (h-BN) decorated with transition metals have been widely studied due to their enhanced physicochemical properties. In this paper, Pt cluster-modified h-BN is proposed as a sensitive material for a novel gas sensor for the online malfunction monitoring of oil-immersed transformers. The inner oil is ultimately decomposed to various gases during the long-term use of oil-immersed transformers. Exposure to excessively high temperatures produces the alkanes CH4 and C2H6, whereas different degrees of discharge generate H2 and C2H2. Therefore, the identification of H2, CH4, and C2H2 gas efficiently measures the quality of transformers. Based on the density functional theory, the most stable h-BN doped with 1-4 Pt atoms is employed to simulate its adsorption performance and response behavior to these typical gases. The adsorption energy, charge transfer, total density of states, projected density of states, and orbital theory of these adsorption systems are analyzed and the results show high consistency. The adsorption ability for these decomposition components are ordered as follows: C2H2 > H2 > CH4. Pt cluster-modified h-BN shows good sensitivity to C2H2, H2, with decreasing conductivity in each system, but is insensitive to CH4 due to its weak physical sorption. The conductivity change of Ptn-h-BN is considerably larger upon H2 than that upon C2H2, but is negligible upon CH4. Our calculations suggest that Pt cluster modified h-BN can be employed in transformers to estimate their operation status.

10.
Sensors (Basel) ; 20(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878041

RESUMEN

In this work, a high sensitivity micro-thermal conductivity detector (µTCD) with four thermal conductivity cells was proposed. Compared with conventional TCD sensors, the thermal conductivity cell in this work was designed as a streamlined structure; the thermistors were supported by a strong cantilever beam and suspended in the center of the thermal conductivity cell, which was able to greatly reduce the dead volume of the thermal conductivity cell and the heat loss of the substrate, improving the detection sensitivity. The experimental results demonstrated that the µTCD shows good stability and high sensitivity, which could rapidly detect light gases with a detection limit of 10 ppm and a quantitative repeatability of less than 1.1%.

11.
Nanomaterials (Basel) ; 9(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635028

RESUMEN

To realize a high response and high selectivity gas sensor for the detection dissolved gases in transformer oil, in this study, the adsorption of four kinds of gases (H2, CO, C2H2, and CH4) on Pd-graphyne was investigated, and the gas sensing properties were evaluated. The energetically-favorable structure of Pd-Doped γ-graphyne was first studied, including through a comparison of different adsorption sites and a discussion of the electronic properties. Then, the adsorption of these four molecules on Pd-graphyne was explored. The adsorption structure, adsorption energy, electron transfer, electron density distribution, band structure, and density of states were calculated and analyzed. The results show that Pd prefers to be adsorbed on the middle of three C≡C bonds, and that the band gap of γ-graphyne becomes smaller after adsorption. The CO adsorption exhibits the largest adsorption energy and electron transfer, and effects an obvious change to the structure and electronic properties to Pd-graphyne. Because of the conductance decrease after adsorption of CO and the acceptable recovery time at high temperatures, Pd-graphyne is a promising gas sensing material with which to detect CO with high selectivity. This work offers theoretical support for the design of a nanomaterial-based gas sensor using a novel structure for industrial applications.

12.
Polymers (Basel) ; 11(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30960069

RESUMEN

A solution for forecasting the dissolved gases in oil-immersed transformers has been proposed based on the wavelet technique and least squares support vector machine. In order to optimize the hyper-parameters of the constructed wavelet LS-SVM regression, the imperialist competition algorithm was then applied. In this study, the assessment of prediction performance is based on the squared correlation coefficient and mean absolute percentage error methods. According to the proposed method, this novel procedure was applied to a simulated case and the experimental results show that the dissolved gas contents could be accurately predicted using this method. Besides, the proposed approach was compared to other prediction methods such as the back propagation neural network, the radial basis function neural network, and generalized regression neural network. By comparison, it was inferred that this method is more effective than previous forecasting methods.

13.
Int J Food Microbiol ; 292: 31-38, 2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-30562671

RESUMEN

Coupling microbial dynamics with the complete dynamics of the packaging gases is still a challenge. In this work the microbial growth kinetic parameters for Pseudomonas and Lactic Acid Bacteria (LAB) in MAP are identified based on accurate estimation of diffusivity of gases and parameter scaled sensitivity approaches. The microbial dynamics are also compared with those estimated based on partial pressure measurement. Scaled sensitivity coefficient analysis using dissolved gases as variable inputs, shows that in most cases the only coefficients large enough for estimation were those for CO2max-diss, and for µmax. The current data showed that dissolved gases led significant differences on the microbial parameter of CO2max values when compared with the headspace gases. On the other hand, the (so-called) dissolved specific growth rate follows a clear trend down for both microorganisms in relation to the increase of the initial headspace CO2. Finally, current results indicate a possible correlation between CO2max-diss, CO2max-headspace, and µmax as functions of CO2init.


Asunto(s)
Dióxido de Carbono/farmacología , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Lactobacillales/crecimiento & desarrollo , Pseudomonas/crecimiento & desarrollo , Animales , Atmósfera , Recuento de Colonia Microbiana , Difusión , Contaminación de Alimentos/prevención & control
14.
Sci Total Environ ; 655: 1062-1070, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30577100

RESUMEN

The estimation of gas-exchange rates between streams and the atmosphere is of great importance for the fate of volatile compounds in rivers. For dissolved oxygen, this exchange process is called reaeration, and its accurate and precise estimation is essential for the quantification of metabolic rates. A common method for the determination of gas-exchange rates is through artificial gas-tracer tests with a proxy gas. We present the implementation of a portable gas-equilibrium membrane inlet mass spectrometer (GE-MIMS) to record concentrations of krypton and propane injected as tracer compound in the context of a gas-tracer test. The field-compatible GE-MIMS uses signals of atmospheric measurements for concentration standardization, and allows recording the dissolved-gas concentrations at a high temporal resolution, leading to overall low measurement uncertainty. Furthermore, the in-situ approach avoids loss of gas during the steps of sampling, transport, storage, and analysis required for ex-situ gas measurements. We compare obtained gas-exchange rate coefficients, reaeration and derived metabolic rates from the in-situ measurements to results obtained from head-space sampling of propane followed by laboratory analysis, and find much lower uncertainties with the in-situ method.

15.
Animal ; 13(5): 975-982, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30293542

RESUMEN

Hydrogen is an important intermediate that is produced during carbohydrate fermentation to volatile fatty acid and utilized by methanogens to produce methane in the rumen. Ruminal volatile fatty acid and dissolved methane concentrations are more than 500 times greater than dissolved hydrogen concentration. Therefore, we hypothesized that dissolved hydrogen might have a higher sensitivity in response to dietary changes compared with volatile fatty acid and dissolved methane. Using goats, we investigated the effects of increasing dietary starch content (maize replaced with wheat bran) and supplementing with rhubarb rhizomes and roots on the relationships among dissolved hydrogen, dissolved methane and other fermentation end products. The study was conducted in a replicated 4×4 Latin square with a 2×2 factorial arrangement of four treatments: two starch levels (220 v. 320 g/kg dry matter (DM)), without and with rhubarb supplement (0% v. 2.8% of total mixed ration). Increased dietary starch and rhubarb supplementation did not alter volatile fatty acid concentrations or methane emissions in terms of g/day, g/g DM intake and g/g organic matter digested. However, goats fed the high-starch diet had greater dissolved hydrogen (P=0.005) and relative abundance of Selenomonas ruminantium (P<0.01), and lower (P=0.02) copy number of protozoa than those fed the low-starch diet. Rhubarb increased ruminal dissolved H2 (P=0.03) and total volatile fatty acid concentration (P<0.001), but decreased copies of bacteria (P=0.002). In conclusion, dissolved hydrogen appears to be more sensitive to dietary changes with starch content and rhubarb supplementation, when compared with volatile fatty acid concentrations and methane production.


Asunto(s)
Cabras/metabolismo , Hidrógeno/metabolismo , Metano/biosíntesis , Rheum/química , Almidón/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Fermentación , Masculino , Rumen/metabolismo , Almidón/administración & dosificación
16.
Nanomaterials (Basel) ; 8(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400651

RESUMEN

The development of functionalized metal oxide/reduced graphene oxide (rGO) hybrid nanocomposites concerning power equipment failure diagnosis is one of the most recent topics. In this work, WO3 nanolamellae/reduced graphene oxide (rGO) nanocomposites with different contents of GO (0.5 wt %, 1 wt %, 2 wt %, 4 wt %) were synthesized via controlled hydrothermal method. X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses-derivative thermogravimetric analysis-differential scanning calorimetry (TG-DTG-DSC), BET, and photoluminescence (PL) spectroscopy were utilized to investigate morphological characterizations of prepared gas sensing materials and indicated that high quality WO3 nanolamellae were widely distributed among graphene sheets. Experimental ceramic planar gas sensors composing of interdigitated alumina substrates, Au electrodes, and RuO2 heating layer were coated with WO3 nanolamellae/reduced graphene oxide (rGO) films by spin-coating technique and then tested for gas sensing towards multi-concentrations of acetylene (C2H2) gases in a carrier gas with operating temperature ranging from 50 °C to 400 °C. Among four contents of prepared samples, sensing materials with 1 wt % GO nanocomposite exhibited the best C2H2 sensing performance with lower optimal working temperature (150 °C), higher sensor response (15.0 toward 50 ppm), faster response-recovery time (52 s and 27 s), lower detection limitation (1.3 ppm), long-term stability, and excellent repeatability. The gas sensing mechanism for enhanced sensing performance of nanocomposite is possibly attributed to the formation of p-n heterojunction and the active interaction between WO3 nanolamellae and rGO sheets. Besides, the introduction of rGO nanosheets leads to the impurity of synthesized materials, which creates more defects and promotes larger specific area for gas adsorption, outstanding conductivity, and faster carrier transport. The superior gas sensing properties of WO3/rGO based gas sensor may contribute to the development of a high-performance ppm-level gas sensor for the online monitoring of dissolved C2H2 gas in large-scale transformer oil.

17.
J Colloid Interface Sci ; 528: 166-173, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29852346

RESUMEN

HYPOTHESIS: In literature it is stated that the stability of oil-in-water emulsions could be enhanced by decreasing the so-called "hydrophobic interactions" between surfaces through removal of dissolved atmospheric gases. Since the effect of the dissolved gases depends on the hydrophobicity of the oil phase, as well as the system pressure, we vary this effect systematically and monitor droplet coalescence in a tailor-made microfluidic device. EXPERIMENTS: The coalescence of oil drops in standard and degassed conditions was studied by direct observation using a microfluidic setup. Two model oils (heptane and xylene) were used to represent different hydrophobicity of the dispersed phases, together with an oil with dynamic interfacial behaviour (diluted crude oil). In addition, the effect of the volume fraction, droplet size and degassing method was studied. FINDINGS: At ambient pressure, the degassing of the continuous phase reduced the extent of coalescence for the model oils, which is in agreement with other reports. No effect of the dissolved gases was found on the drop formation process. At elevated pressures, the dissolved gases influenced only the most hydrophobic oil (heptane), while causing no effect in the other systems. The coalescence frequencies decreased upon the reduction of the drop sizes, which was justified with the theory for two interacting spheres.

18.
J Contam Hydrol ; 208: 35-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29224929

RESUMEN

The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175cm high×525cm long) sand aquifer tank for 330days, with a vertical shift in plume position and increased nutrient inputs occurring at ~Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.


Asunto(s)
Etanol/metabolismo , Agua Subterránea , Contaminantes Químicos del Agua/metabolismo , Compuestos de Amonio/metabolismo , Biodegradación Ambiental , Etanol/análisis , Fermentación , Agua Subterránea/química , Hidrógeno/análisis , Hidrógeno/metabolismo , Hierro/química , Hierro/metabolismo , Oxidación-Reducción , Fósforo/metabolismo , Dióxido de Silicio , Análisis Espacio-Temporal , Sulfatos/química , Sulfatos/metabolismo , Contaminantes Químicos del Agua/análisis
19.
Adv Colloid Interface Sci ; 250: 54-63, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29100682

RESUMEN

Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10-20J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems.

20.
Ultrason Sonochem ; 34: 721-728, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773299

RESUMEN

One of the controlling parameters of the physical and chemical effects produced by acoustic cavitation is the use of dissolved gas as it affects the temperature and pressure obtained at cavity collapse and, the reactions happening in a bubble. It also enhances the nucleation rates by decreasing the threshold required for cavitation by providing dissolved gas nuclei. The present study looks into the effect of carbon dioxide gas on cavitation using a diffusion limited model. The model couples the dynamics of a single bubble with 11 chemical reactions involving 8 reactive species. The effect of mass transport (diffusion of water vapor and radical species) and heat transport (by conduction) is included in the model. Simulations were carried out for different initial compositions of an Ar-CO2- bubble and the results were compared with an experimental study reported in the earlier literature. The results have indicated that intensity of collapse decreases with an increase in CO2 composition in the bubble thereby decreasing the yield of the oxidizing radicals like OH. This is due to the lower polytropic coefficient and higher specific heat of CO2 compared to that of argon. Also, the bubbles grows to a larger extent with an increase in the dissolved CO2 concentration thereby accommodating higher amounts of water vapor and ultimately decreasing the temperature obtained at collapse. Simulations were done for a bubble containing a mole fraction of 95% Ar and 5% CO2 at different values of driving frequencies (213, 355, 647 and 1000kHz) and driving pressure amplitudes (3.22, 5, 7.5 and 10bar). Higher production rate of OH radicals was predicted at a lower driving frequency, for a given driving pressure amplitude and it increased with an increase in the driving pressure amplitude. At a given driving pressure amplitude, the yield of OH radicals decreased with an increase in the CO2 concentration in the bubble for all the driving frequencies used in the simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA