Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros











Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400515, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122478

RESUMEN

The utilization of (cationic) reversible addition-fragmentation chain transfer (RAFT) polymerization in photoinduced three-dimensional (3D) printing has emerged as a robust technique for fabricating a variety of stimuli-responsive materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited, thereby constraining their broader applicability. In this study, a facile way is introduced to modulate the mechanical properties of 3D printed objects by mixing two chain transfer agents (CTAs) within a radical-promoted cationic RAFT (RPC-RAFT) polymerization-based 3D printing process. Through systematic investigations employing tensile testing and dynamic mechanical analysis (DMA), the influence of CTA concentration and molar ratio between two CTAs on the mechanical behavior of the printed objects are explored. These findings demonstrate that higher concentrations of CTAs or a greater molar ratio of the more active CTA within the mixed CTAs result in decreased Young's modulus and glass transition temperatures of the printed objects. Moreover, the tensile failure strain increased with the increasing CTA content, i.e., the samples became more ductile. This methodology broadens the toolbox available for tailoring the mechanical properties of 3D printed materials.

2.
Polym Chem ; 15(3): 127-142, 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-39070757

RESUMEN

This tutorial review presents the theory and application of SEC-MALS with minimal equations and a focus on synthetic polymer characterization, serving as an entry point for polymer scientists who want to learn more about SEC-MALS. We discuss the principles of static light scattering, outline its capability to generate absolute weight-average molar mass values, and extend its application to SEC-MALS. Practical elements are emphasized, enabling researchers to appreciate how values for M n , M w , and D are determined in an SEC-MALS experiment and how experimental conditions and input values, such as the specific refractive index increment ( d n / d c ), influence the results. Several illustrative SEC-MALS experiments demonstrate the impact of separation quality on M n (as opposed to M w ), the appearance of contaminants in SEC chromatograms from sample preparation, the influence of concentration on data quality, and how polymer topology affects molecular weight characterization in SEC. Finally, we address practical considerations, common issues, and persistent misconceptions.

3.
Chem Asian J ; : e202400648, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946109

RESUMEN

Photoinduced 3D printing via photocontrolled reversible-deactivation radical polymerization (photoRDRP) techniques has emerged as a robust technique for creating polymeric materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited. In this study, we present a facile approach for adjusting the mechanical properties of 3D-printed objects by adjusting the polymer dispersity within a Norrish type I photoinitiated reversible addition-fragmentation chain transfer (NTI-RAFT) polymerization-based 3D printing process. We investigated the effects of varying the concentrations and molar ratios of trithiocarbonate (BTPA) and xanthate (EXEP) on the mechanical properties of the printed materials. Our findings demonstrate that increased concentrations of RAFT agents or higher proportions of the more active BTPA lead to a decrease in Young's modulus and glass transition temperatures, along with an increase in elongation at break, which can be attributed to the enhanced homogeneity of the polymer network. Using a commercial LCD printer, the NTI-RAFT-based 3D printing system effectively produced materials with tailored mechanical properties, highlighting its potential for practical applications.

4.
Angew Chem Int Ed Engl ; : e202409744, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058330

RESUMEN

Alternating copolymers are crucial for diverse applications. While dispersity (Ɖ, also known as molecular weight distribution, MWD) influences the properties of polymers, achieving low dispersities in alternating copolymers poses a notable challenge via free radical polymerizations (FRPs). In this work, we demonstrated an unexpected discovery that dispersities are affected by the participation of charge transfer complexes (CTCs) formed between monomer pairs during free radical alternating copolymerization, which have inspired the successful synthesis of various alternating copolymers with low dispersities (>30 examples, Ɖ = 1.13-1.39) under visible-light irradiation. The synthetic method is compatible with binary, ternary and quaternary alternating copolymerizations and is expandable for both fluorinated and non-fluorinated monomer pairs. DFT calculations combined with model experiments indicated that CTC-absent reaction exhibits higher propagation rates and affords fewer radical terminations, which could contribute to low dispersities. Based on the integration of Monte Carlo simulation and Bayesian optimization, we established the relationship map between FRP parameter space and dispersity, further suggested the correlation between low dispersities and higher propagation rates. Our research sheds light on dispersity control via FRPs and creates a novel platform to investigate polymer dispersity through machine learning.

5.
Pharmaceutics ; 16(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931919

RESUMEN

Many physical and chemical properties of solids, such as strength, plasticity, dispersibility, solubility and dissolution are determined by defects in the crystal structure. The aim of this work is to study in situ dynamic, dispersion, chemical, biological and surface properties of lacosamide powder after a complete cycle of mechanical loading by laser scattering, electron microscopy, FR-IR and biopharmaceutical approaches. The SLS method demonstrated the spontaneous tendency toward surface-energy reduction due to aggregation during micronisation. DLS analysis showed conformational changes of colloidal particles as supramolecular complexes depending on the loading time on the solid. SEM analysis demonstrated the conglomeration of needle-like lacosamide particles after 60 min of milling time and the transition to a glassy state with isotropy of properties by the end of the tribochemistry cycle. The following dynamic properties of lacosamide were established: elastic and plastic deformation boundaries, region of inhomogeneous deformation and fracture point. The ratio of dissolution-rate constants in water of samples before and after a full cycle of loading was 2.4. The lacosamide sample, which underwent a full cycle of mechanical loading, showed improved kinetics of API release via analysis of dissolution profiles in 0.1 M HCl medium. The observed activation-energy values of the cell-death biosensor process in aqueous solutions of the lacosamide samples before and after the complete tribochemical cycle were 207 kJmol-1 and 145 kJmol-1, respectively. The equilibrium time of dissolution and activation of cell-biosensor death corresponding to 20 min of mechanical loading on a solid was determined. The current study may have important practical significance for the transformation and management of the properties of drug substances in solid form and in solutions and for increasing the strength of drug matrices by pre-strain hardening via structural rearrangements during mechanical loading.

6.
Chembiochem ; 25(11): e202400108, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567504

RESUMEN

Detailed insights into protein structure/function relationships require robust characterization methodologies. Free-solution capillary electrophoresis (CE) is a unique separation technique which is sensitive to the conformation and/or composition of proteins, and therefore provides information on the heterogeneity of these properties. Three unrelated, conformationally/compositionally-altered proteins were separated by CE. An electrophoretic mobility distribution was determined for each protein along with its conformational and/or compositional heterogeneity. The CE results were compared with molar mass distributions obtained from size-exclusion chromatography coupled to light scattering (SEC-MALS). Bovine serum albumin multimers and two monomeric species were separated, highlighting variations in conformational/compositional heterogeneity among the multimers. Analysis of yeast alcohol dehydrogenase resolved two monomeric conformers and various tetrameric species, illustrating the impact of zinc ion removal and disulfide bond reduction on the protein's heterogeneity. The apo (calcium-free) and holo forms of bovine α-lactalbumin were separated and differences in the species' heterogeneity were measured; by contrast, the SEC-MALS profiles were identical. Comparative analysis of these structurally unrelated proteins provided novel insights into the interplay between molar mass and conformational/compositional heterogeneity. Overall, this study expands the utility of CE by demonstrating its capacity to discern protein species and their heterogeneity, properties which are not readily accessible by other analytical techniques.


Asunto(s)
Electroforesis Capilar , Conformación Proteica , Bovinos , Animales , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/metabolismo , Albúmina Sérica Bovina/química , Lactalbúmina/química
7.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475277

RESUMEN

Specific surface area (SSA) is an integral characteristic of the interfacial surface in poly-disperse systems, widely used for the assessment of technological properties in polymer materials and composites. Hygroscopic water content (Wh) is an obligate indicator of dispersed materials prior to any analysis of their chemical composition. This study links both indicators for the purpose of the express assessment of SSA using widely available Wh data, on the example of natural (starch, cellulose) and synthetic (acrylic hydrogels) polymer materials. The standard BET analysis of SSA using water vapor desorption was chosen as a reference method. In contrast to the known empirical correlations, this study is based on the fundamental thermodynamic theory of the disjoining water pressure for the connection of the analyzed quantities. The statistical processing of the results for the new methodology and the standard BET method showed their good compliance in a wide range of SSA from 200 to 900 m2/g. The most important methodological conclusion is the possibility of an accurate physically based calculation of hydrophilic SSA in polymer materials using their Wh data at a known relative humidity in the laboratory.

8.
Angew Chem Int Ed Engl ; 63(21): e202315200, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38546541

RESUMEN

Dispersity (Ð or Mw/Mn) is an important parameter in material design and as such can significantly impact the properties of polymers. Here, polymer networks with independent control over the molecular weight and dispersity of the linear chains that form the material are developed. Using a RAFT polymerization approach, a library of polymers with dispersity ranging from 1.2-1.9 for backbone chain-length (DP) 100, and 1.4-3.1 for backbone chain-length 200 were developed and transformed to networks through post-polymerization crosslinking to form disulfide linkers. The tensile, swelling, and adhesive properties were explored, finding that both at DP 100 and DP 200 the swelling ratio, tensile strength, and extensibility were superior at intermediate dispersity (1.3-1.5 for DP 100 and 1.6-2.1 for DP 200) compared to materials with either substantially higher or lower dispersity. Furthermore, adhesive properties for materials with chains of intermediate dispersity at DP 200 revealed enhanced performance compared to the very low or high dispersity chains.

9.
Int J Pharm ; 653: 123895, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38346598

RESUMEN

Amorphous solid dispersions (ASD) are known to enhance the absorption of poorly water-soluble drugs. In this work we synthesise well-defined Polyvinylpyrrolidone (PVP) to establish the impact of dispersity and chain-end functionality on the physical properties of Curcumin (CUR)/PVP ASD. Thermodynamic characterisation of synthesised PVP emphasises a strong effect of the dispersity on the glass transition temperature (Tg), 50 °C higher for synthesised PVP than for commercial PVP K12 of same molar mass. This increase of Tg affects the thermodynamic properties of CUR/PVP ASD successfully formulated up to 70 wt% of CUR by milling or solvent evaporation. The evolution of both the Tg and CUR solubility values versus CUR content points out the development of fairly strong CUR-PVP interactions that strengthen the antiplasticising effect of PVP on the Tg of ASD. However, for ASD formulated with commercial PVP this effect is counterbalanced at low CUR content by a plasticising effect due to the shortest PVP chains. Moreover, the overlay of the phase and state diagrams highlights the strong impact of the polymer dispersity on the stability of CUR/PVP ASD. ASD formulated with low dispersity PVP are stable on larger temperature and concentration ranges than those formulated with PVP K12.


Asunto(s)
Curcumina , Polímeros , Povidona , Solubilidad , Temperatura de Transición
10.
Small ; : e2307502, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050951

RESUMEN

Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.

11.
Angew Chem Int Ed Engl ; 62(48): e202314729, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37814139

RESUMEN

The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.

12.
Macromol Rapid Commun ; 44(18): e2300198, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37231589

RESUMEN

Modulating on-demand polymerization is a challenge in synthetic macromolecules. Herein, tailoring polymerization controllability and dispersity during single-electron transfer mediated living radical polymerization (SET-LRP) of methyl methacrylate (MMA) is achieved. Hexaarylbiimidazole (HABI) is employed as a photoswitchable catalyst, allowing reversible control of catalytic activity between an active and inactive state. In the presence of HABI and with the light on (active state), control SET-LRP of MMA follows first-order kinetics, resulting in polymers with a narrow molecular weight distribution. In contrast, polymerization responds to light and reverts to their original uncontrolled state with light off (inactive state). Therefore, repeatable resetting polymerization can be easily performed. The key to photomodulating dispersity is to use an efficient molecular switch to tailor the breadths of dispersity. Besides, the mechanism of HABI-mediated SET-LRP with switchable ability is proposed.


Asunto(s)
Polímeros , Polimerizacion , Sustancias Macromoleculares , Metilmetacrilato
13.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049759

RESUMEN

Chitosan (CS), a biopolymer derived from chitin, is known for strong antifungal activity while being biodegradable, biocompatible, and non-toxic. Because of its characteristic it has been widely used in control of fungal pathogens. Antifungal activity of chitosan can be further enhanced by obtaining chitosan nanoparticles (CSNPs). However, most of the experiments using CS and CSNPs as antifungal agents were performed under various conditions and using diverse CS batches of different characteristics and obtained from different sources. Therefore, it is essential to systematize the available information. This work contains a current review on how the CS parameters: molecular weight, degree of deacetylation, acetylation pattern and dispersity of these features shape its antifungal activity. It also considers how concentration and protonation (pH) of CS water solutions define final biological effect. Review explains in detail how CS parameters affect characteristics of CSNPs, particle size, zeta potential, and dispersities of both and determine antifungal activity. In addition to the parameters of CS and CSNPs, the review also discusses the possible characteristics of fungal cells that determine their susceptibility to the substances. The response of fungi to CS and CSNPs varies according to different fungal species and their stages of development. The precise knowledge of how CS and CSNP parameters affect specific fungal pathogens will help design and optimize environmentally friendly plant protection strategies against fungi.


Asunto(s)
Quitosano , Nanopartículas , Antifúngicos/farmacología , Quitosano/farmacología , Quitosano/química , Nanopartículas/química , Tamaño de la Partícula
14.
Carbohydr Polym ; 309: 120705, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906366

RESUMEN

The influence of molecular weight, polydispersity, and degree of branching of four potato starches (Paselli MD10, Eliane MD6, Eliane MD2, and highly branched starch) on the adsorption rates on activated carbon (Norit CA1) was investigated. Changes in starch concentration and size distribution over time were analysed by Total Starch Assay and Size Exclusion Chromatography. Average molecular weight and degree of branching of a starch scaled negatively with average adsorption rate. Within a size-distribution, adsorption rates scaled negatively with increasing molecule size, resulting in an increased average molecular weight in solution of between 25 % and 213 % and a decreased polydispersity of between 13 % and 38 %. Simulation with dummy distributions estimated the ratio of adsorption rates for 20th percentile and 80th percentile molecules within a distribution to range between a factor 4 and 8 for the different starches. Competitive adsorption decreased the adsorption rate of molecules above the average size within a sample distribution.

15.
Food Chem ; 413: 135530, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758386

RESUMEN

The current study was aimed to enhance the solubility, dispersibility and biotransformation efficacy of ellagic acid (EA) by preparing food-derived ellagic acid-Undaria pinnatifida polysaccharides solid dispersion (EA/UPP SD). The results demonstrated that the solubility of EA/UPP SD was improved from 0.014 mg/mL to 0.383 mg/mL, and the enhancement was related to converting to a more amorphous state and restraining its self-aggregation during the mechanochemical process. The structure of EA/UPP SDs was mostly maintained by hydrogen bonds and hydrophobic interactions between EA and UPP. Moreover, the result of in vitro anaerobic incubations showed the biotransformation process was improved with EA/UPP SD addition to substrate due to the advance of microbial accessibility in EA dispersion. Altogether, these results indicated that the EA/UPP SDs expanded the application of EA by increasing the solubility and dispersity, and provided a theoretical basis for bioconversion efficiency enhancement.


Asunto(s)
Ácido Elágico , Undaria , Ácido Elágico/química , Undaria/química , Solubilidad , Polisacáridos/química
16.
Micromachines (Basel) ; 13(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36557375

RESUMEN

The synthesis of nanoparticles in microchannels promises the advantages of small size, uniform shape and narrow size distribution. However, only with insights into the mixing processes can the most suitable designs and operating conditions be systematically determined. Coaxial lamination mixers (CLM) built by 2-photon polymerization can operate long-term stable nanoparticle precipitation without fouling issues. Contact of the organic phase with the microchannel walls is prevented while mixing with the aqueous phase is intensified. A coaxial nozzle allows 3D hydrodynamic focusing followed by a sequence of stretch-and-fold units. By means of a digital twin based on computational fluid dynamics (CFD) and numerical evaluation of mixing progression, the influences of operation conditions are now studied in detail. As a measure for homogenization, the mixing index (MI) was extracted as a function of microchannel position for different operating parameters such as the total flow rate and the share of solvent flow. As an exemplary result, behind a third stretch-and-fold unit, practically perfect mixing (MI>0.9) is predicted at total flow rates between 50 µL/min and 400 µL/min and up to 20% solvent flow share. Based on MI values, the mixing time, which is decisive for the size and dispersity of the nanoparticles, can be determined. Under the conditions considered, it ranges from 5 ms to 54 ms. A good correlation between the predicted mixing time and nanoparticle properties, as experimentally observed in earlier work, could be confirmed. The digital twin combining CFD with the MI methodology can in the future be used to adjust the design of a CLM or other micromixers to the desired total flow rates and flow rate ratios and to provide valuable predictions for the mixing time and even the properties of nanoparticles produced by microfluidic antisolvent precipitation.

17.
Adv Sci (Weinh) ; 9(24): e2201807, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35794429

RESUMEN

Solution-processed quasi-2D perovskites contain multiple quantum wells with a broad width distribution. Inhomogeneity results in the charge funneling into the smallest bandgap components, which hinders deep-blue emission and accelerates Auger recombination. Here, a synthetic strategy applied to a range of quasi-2D perovskite systems is reported, that significantly narrows the quantum well dispersity. It is shown that the phase distribution in the perovskite film is significantly narrowed with controlled, simultaneous evaporation of solvent and antisolvent. Modulation of film formation kinetics of quasi-2D perovskite enables stable deep-blue electroluminescence with a peak emission wavelength of 466 nm and a narrow linewidth of 14 nm. Light emitting diodes using the perovskite film show a maximum luminance of 280 cd m-2 at an external quantum efficiency of 0.1%. This synthetic approach will serve in producing new materials widening the color gamut of next-generation displays.

18.
Materials (Basel) ; 15(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744264

RESUMEN

Despite their excellent performance, two-dimension nanomaterials have certain limitations in improving the performance of cement-based materials due to their poor dispersity in the alkaline environment. This paper has synthesized a new two-dimension stacked GO-SiO2 (GOS) hybrid through the sol-gel method. Nano-SiO2 is coated on the surface of GO with wrinkling characteristics, and the atomic ratio of C, O, and Si in GOS is 1:1.69:0.57. The paper discusses the impacts on the spreading, Marsh cone flow time, rheological properties, mechanical properties, and microstructure of cement-based materials for the GOS at different mixing quantities. Furthermore, with the same mixing quantity of 0.01%, the influences on the dispersity, flow properties, rheological parameters, and mechanical properties of GOS and graphene oxide (GO) are compared. Lastly, fuzzy matrix analysis has been adopted to analyze the comprehensive performance of cement-based materials containing GOS. The research results indicate that, compared with the reference sample, the spreading for the GOS cement mortar with 0.01% mixing quantity was reduced by 4.76%, the yield shear stress increased by 37.43%, and the equivalent plastic viscosity was elevated by 2.62%. In terms of the 28 d cement pastes, the compressive and flexural strength were boosted by 27.17% and 42.86%, respectively. According to the optical observation, GOS shows better dispersion stability in the saturated calcium hydroxide solution and simulated pore solution than GO. Compared with the cement-based materials with the same mixing quantity (0.01%), GOS has higher spreading, lower shear yield stress, and higher compressive and flexural strength than GO. Finally, according to the results of fuzzy matrix analysis, when the concentration of GOS is 0.01%, it presents a more excellent comprehensive performance with the highest score. Among the performance indicators, the most significant improvement was in the flexural properties of cement-based materials, which increased from 8.6 MPa to 12.3 MPa on the 28 d.

19.
Food Chem ; 387: 132906, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413554

RESUMEN

Loading hydrophobic phytochemicals by protein particles is challenged by either insufficient loading capacity or colloidal instability. In this study, hydrosoluble curcumin-loaded nanoparticles were prepared using hydrophobic rice proteins (RPs). The fabrication was facilitated by dissolving curcumin and RPs at pH 12.0 before neutralizing the basicity. The formation of nanoparticles was studied by fluorescence and infrared spectroscopy, and the microstructures were studied by transmission electron microscopy. The results showed the entrapping of curcumin inside the hydrophobic reservoir formed by the acid-induced refolding of RPs. Due to promoted burial of the hydrophobic moieties, the curcumin-loaded RP-nanoparticles displayed excellent colloidal stability during the 28-day storage. Bearing 144.41 mg/g protein of curcumin, the nanoparticles demonstrated prominent antioxidant properties, with the DPPH scavenging capacity increased by up to 88.62% compared to the free curcumin. This study harnessed hydrophobic attractions as a tool for management of the protein-phytochemical interactions, overcoming colloidal instabilities of both individual components.


Asunto(s)
Curcumina , Nanopartículas , Oryza , Proteínas de Plantas , Antioxidantes/química , Curcumina/química , Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Tamaño de la Partícula , Proteínas de Plantas/química
20.
Acta Pharm Sin B ; 12(1): 394-405, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127394

RESUMEN

Biomimetic nanoengineering presents great potential in biomedical research by integrating cell membrane (CM) with functional nanoparticles. However, preparation of CM biomimetic nanomaterials for custom applications that can avoid the aggregation of nanocarriers while maintaining the biological activity of CM remains a challenge. Herein, a high-performance CM biomimetic graphene nanodecoy was fabricated via purposeful surface engineering, where polyethylene glycol (PEG) was used to modifying magnetic graphene oxide (MGO) to improve its stability in physiological solution, so as to improve the screening efficiency to active components of traditional Chinese medicine (TCM). With this strategy, the constructed PEGylated MGO (PMGO) could keep stable at least 10 days, thus improving the CM coating efficiency. Meanwhile, by taking advantage of the inherent ability of HeLa cell membrane (HM) to interact with specific ligands, HM-camouflaged PMGO showed satisfied adsorption capacity (116.2 mg/g) and selectivity. Finally, three potential active components, byakangelicol, imperatorin, and isoimperatorin, were screened from Angelica dahurica, whose potential antiproliferative activity were further validated by pharmacological studies. These results demonstrated that the purposeful surface engineering is a promising strategy for the design of efficient CM biomimetic nanomaterials, which will promote the development of active components screening in TCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA