Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3180-3189, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37382001

RESUMEN

In this paper, 50 batches of representative traditional Chinese medicine tablets were selected and the disintegration time was examined with the method in Chinese Pharmacopoeia. The disintegration time and disintegration phenomenon were recorded, and the dissolution behaviors of water-soluble and ultraviolet-absorbent components during the disintegration process of tablets were characterized by self-control method. The results revealed that coating type and raw material type influenced the disintegration time of tablets. It was found that only 4% of traditional Chinese medicine tablets had obvious fragmentation during the disintegration process, while 96% of traditional Chinese medicine tablets showed gradual dissolution or dispersion. Furthermore, according to the disintegration speed, disintegration phenomenon, and whether the cumulative dissolution of measured components was > 90% at complete disintegration, a disintegration behavior classification system(DBCS) was created for the regular-release traditional Chinese medicine tablets. As a result, the disintegration behaviors of 50 batches of traditional Chinese medicine tablets were classified into four categories, i.e. ⅠA_2, ⅠB_1, ⅡB_1, and ⅡB_2. traditional Chinese medicine tablets(Class I) with disintegration time ≤ 30 min were defined to be rapid in disintegration, which can be the objective of optimization or improvement of Chinese herbal extract(semi extract) tablets. Different drug release models were used to fit the dissolution curve of traditional Chinese medicine tablets with gradual dissolution or dispersion phenomenon(i.e. Type B tablets). The results showed that the dissolution curves of water-soluble components in the disintegration process conformed to the zero order kinetics and the Ritger-Peppas model. It could be inferred that the disintegration mechanisms of type B tablets were a combination of dissolution controlled and swelling controlled mechanisms. This study contributes to understanding the disintegration behavior of traditional Chinese medicine tablets, and provides a reference for the design and improvement of disintegration performance of traditional Chinese medicine tablets.


Asunto(s)
Composición de Medicamentos , Medicina Tradicional China , Comprimidos , Comercio , Agua
2.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981454

RESUMEN

In this paper, 50 batches of representative traditional Chinese medicine tablets were selected and the disintegration time was examined with the method in Chinese Pharmacopoeia. The disintegration time and disintegration phenomenon were recorded, and the dissolution behaviors of water-soluble and ultraviolet-absorbent components during the disintegration process of tablets were characterized by self-control method. The results revealed that coating type and raw material type influenced the disintegration time of tablets. It was found that only 4% of traditional Chinese medicine tablets had obvious fragmentation during the disintegration process, while 96% of traditional Chinese medicine tablets showed gradual dissolution or dispersion. Furthermore, according to the disintegration speed, disintegration phenomenon, and whether the cumulative dissolution of measured components was > 90% at complete disintegration, a disintegration behavior classification system(DBCS) was created for the regular-release traditional Chinese medicine tablets. As a result, the disintegration behaviors of 50 batches of traditional Chinese medicine tablets were classified into four categories, i.e. ⅠA_2, ⅠB_1, ⅡB_1, and ⅡB_2. traditional Chinese medicine tablets(Class I) with disintegration time ≤ 30 min were defined to be rapid in disintegration, which can be the objective of optimization or improvement of Chinese herbal extract(semi extract) tablets. Different drug release models were used to fit the dissolution curve of traditional Chinese medicine tablets with gradual dissolution or dispersion phenomenon(i.e. Type B tablets). The results showed that the dissolution curves of water-soluble components in the disintegration process conformed to the zero order kinetics and the Ritger-Peppas model. It could be inferred that the disintegration mechanisms of type B tablets were a combination of dissolution controlled and swelling controlled mechanisms. This study contributes to understanding the disintegration behavior of traditional Chinese medicine tablets, and provides a reference for the design and improvement of disintegration performance of traditional Chinese medicine tablets.


Asunto(s)
Comercio , Medicina Tradicional China , Comprimidos , Agua , Composición de Medicamentos
3.
Int J Pharm X ; 4: 100106, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34977560

RESUMEN

Stability studies are an integral part of the drug development process for any drug product. In addition to monitoring chemical degradation, the physical stability of a drug product must also be evaluated to ensure that the drug release and performance is not affected by storage. In this study, directly compressed tablets of 16 different formulations were exposed to an accelerated stability program to quantify changes in tablet breaking force, porosity, contact angle and disintegration time. Tablets were exposed to five different storage conditions from 37∘ C/30% relative humidity (RH) to 70∘ C/75%RH with testing after 2 and 4 weeks of storage. Each formulation contained two different fillers (47% w/w each), a disintegrant (5% w/w) and magnesium stearate (1% w/w). The results show that tablets stored at high humidity show increases in porosity and decreases in tensile strength, particularly if they contain a highly hygroscopic filler such as microcrystalline cellulose (MCC). For tablets stored at high temperature, the most commonly affected property was the tablet wettability, measured by sessile drop contact angle measurements. These results are considered in combination with the performance-controlling disintegration mechanism (Maclean et al., 2021) to identify the critical properties which influence the performance after storage.

4.
Int J Pharm ; 599: 120221, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33540006

RESUMEN

The design and manufacture of tablets is a challenging process due to the complex interrelationships between raw material properties, the manufacturing settings and the tablet properties. An important factor in formulation and process design is the fact that raw material and tablet properties drive the disintegration and dissolution performance of the final drug product. This study aimed to identify the mechanisms which control tablet disintegration for 16 different immediate-release placebo formulations based on raw material and tablet properties. Each formulation consisted of two fillers (47% each), one disintegrant and a lubricant. Tablets were manufactured by direct compression using four different combinations of the fillers microcrystalline cellulose (MCC), mannitol, lactose and dibasic calcium phosphate anhydrous (DCPA). The disintegration mechanism was primarily driven by the filler combination, where MCC/lactose tablets were identified as wettability controlled, MCC/mannitol tablets as dissolution controlled and DCPA-based tablets (MCC/DCPA and lactose/DCPA) as swelling controlled. A change of 2% in porosity for the wettability controlled tablets (MCC/lactose) caused a significant acceleration of the disintegration process (77% reduction of disintegration time), whereas for swelling controlled tablets (MCC/DCPA) the same porosity change did not considerably impact the disintegration process (3% change in disintegration time). By classifying these formulations, critical formulation and manufacturing properties can be identified to allow tablet performance to be optimised.


Asunto(s)
Excipientes , Lactosa , Composición de Medicamentos , Presión , Solubilidad , Comprimidos
5.
Pharm Dev Technol ; 20(6): 762-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24848093

RESUMEN

Tablet disintegration can be influenced by several parameters, such as storage conditions, type and amount of disintegrant, and relative tablet density. Even though these parameters have been mentioned in the literature, the understanding of the disintegration process is limited. In this study, water uptake and force development of disintegrating tablets are analyzed, as they reveal underlying processes and interactions. Measurements were performed on dibasic calcium phosphate tablets containing seven different disintegrants stored at different relative humidities (5-97%), and on tablets containing disintegrants with different mechanisms of action (swelling and shape recovery), compressed to different relative densities. Disintegration times of tablets containing sodium starch glycolate are affected most by storage conditions, which is displayed in decreased water uptake and force development kinetics. Disintegration times of tablets with a swelling disintegrant are only marginally affected by relative tablet density, whereas the shape recovery disintegrant requires high relative densities for quick disintegration. The influence of relative tablet density on the kinetics of water uptake and force development greatly depends on the mechanism of action. Acquired data allows a detailed analysis of the influence of storage conditions and mechanisms of action on disintegration behavior.


Asunto(s)
Fosfatos de Calcio/química , Excipientes/química , Almidón/análogos & derivados , Comprimidos/química , Agua/química , Cinética , Solubilidad , Almidón/química , Vapor/análisis , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA