Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38904586

RESUMEN

BACKGROUND AIMS: Chimeric antigen receptor T (CAR-T) cells targeting single antigens show limited activity against solid tumors due to poor T cell persistence, low efficiency infiltration, and exhaustion together with heterogeneous tumor-associated antigen (TAA) expression. This is also true in high-risk neuroblastoma (HRNB), a lethal pediatric extracranial malignancy. To overcome these obstacles, a combinational strategy using GD2-specific and GPC2-specific CAR-T cells was developed to improve immunotherapeutic efficacy. METHODS: We individually developed GD2-specific and GPC2-specific CARs containing a selective domain (sCAR) which was a peptide of 10 amino acids derived from human nuclear autoantigen La/SS-B. These constructs allowed us to generate two different HRNB antigen-specific CAR-T cells with enhanced biological activity through stimulating sCAR-engrafted T cells via a selective domain-specific monoclonal antibody (SmAb). Binding affinity and stimulation of GD2- and GPC2-specific sCARs by SmAb were measured, and transient and persistent anti-tumor cytotoxicity of GD2sCAR-T and GPC2sCAR-T cells were quantified in neuroblastoma cell lines expressing different TAA levels. The anti-tumor pharmaceutical effects and cellular mechanisms mediated by single or combinational sCAR-T cells were evaluated in vitro and in vivo. RESULTS: GD2- and GPC2-specific sCARs had antigen-specific binding affinity similar to their parental counterparts and were recognized by SmAb. SmAb-mediated stimulation selectively activated sCAR-T proliferation and increased central memory T cells in the final products. SmAb-stimulated sCAR-T cells had enhanced transient cytolytic activity, and combination therapy extended long-term anti-tumor activity in vitro through TNF-α and IL-15 release. Stimulated sCAR-T cells overcame heterogeneous antigen expression in HRNB, and the multi-TAA-targeting strategy was especially efficacious in vivo, inducing apoptosis through the caspase-3/PARP pathway and inhibiting the release of several tumor-promoting cytokines. CONCLUSIONS: These data suggest that combined targeting of multiple TAAs is a promising strategy to overcome heterogenous antigen expression in solid tumors and extend CAR-T cell persistence for HRNB immunotherapy.

2.
Front Immunol ; 15: 1371345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558810

RESUMEN

Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αß T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.


Asunto(s)
Células T Asesinas Naturales , Neuroblastoma , Receptores Quiméricos de Antígenos , Animales , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Neuroblastoma/patología , Inmunoterapia/métodos , Células Asesinas Naturales/metabolismo , Microambiente Tumoral
3.
Cancers (Basel) ; 15(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37835531

RESUMEN

Patients with high-risk neuroblastoma (HR-NB) who are unable to achieve a complete response (CR) to induction therapy have worse outcomes. We investigated the combination of humanized anti-GD2 mAb naxitamab (Hu3F8), irinotecan (I), temozolomide (T), and sargramostim (GM-CSF)-HITS-against primary resistant HR-NB. Eligibility criteria included having a measurable chemo-resistant disease at the end of induction (EOI) treatment. Patients were excluded if they had progressive disease (PD) during induction. Prior anti-GD2 mAb and/or I/T therapy was permitted. Each cycle, administered four weeks apart, comprised Irinotecan 50 mg/m2/day intravenously (IV) plus Temozolomide 150 mg/m2/day orally (days 1-5); naxitamab 2.25 mg/kg/day IV on days 2, 4, 8 and 10, (total 9 mg/kg or 270 mg/m2 per cycle), and GM-CSF 250 mg/m2/day subcutaneously was used (days 6-10). Toxicity was measured using CTCAE v4.0 and responses through the modified International Neuroblastoma Response Criteria (INRC). Thirty-four patients (median age at treatment initiation, 4.9 years) received 164 (median 4; 1-12) HITS cycles. Toxicities included myelosuppression and diarrhea, which was expected with I/T, and pain and hypertension, expected with naxitamab. Grade ≥3-related toxicities occurred in 29 (85%) of the 34 patients; treatment was outpatient. The best responses were CR = 29% (n = 10); PR = 3% (n = 1); SD = 53% (n = 18); PD = 5% (n = 5). For cohort 1 (early treatment), the best responses were CR = 47% (n = 8) and SD = 53% (n = 9). In cohort 2 (late treatment), the best responses were CR = 12% (n = 2); PR = 6% (n = 1); SD = 53% (n = 9); and PD = 29% (n = 5). Cohort 1 had a 3-year OS of 84.8% and EFS 54.4%, which are statistically significant improvements (EFS p = 0.0041 and OS p = 0.0037) compared to cohort 2. In conclusion, naxitamab-based chemo-immunotherapy is effective against primary chemo-resistant HR-NB, increasing long-term outcomes when administered early during the course of treatment.

4.
Cancers (Basel) ; 15(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37509390

RESUMEN

Monoclonal antibodies (mAbs), as the name implies, are clonal antibodies that bind to the same antigen. mAbs are broadly used as diagnostic or therapeutic tools for neoplasms, autoimmune diseases, allergic conditions, and infections. Although most mAbs are approved for treating adult cancers, few are applicable to childhood malignancies, limited mostly to hematological cancers. As for solid tumors, only anti-disialoganglioside (GD2) mAbs are approved specifically for neuroblastoma. Inequities of drug access have continued, affecting most therapeutic mAbs globally. To understand these challenges, a deeper dive into the complex transition from basic research to the clinic, or between marketing and regulatory agencies, is timely. This review focuses on current mAbs approved or under investigation in pediatric cancer, with special attention on solid tumors and anti-GD2 mAbs, and the hurdles that limit their broad global access. Beyond understanding the mechanisms of drug resistance, the continual discovery of next generation drugs safer for children and easier to administer, the discovery of predictive biomarkers to avoid futility should ease the acceptance by patient, health care professionals and regulatory agencies, in order to expand clinical utility. With a better integration into the multimodal treatment for each disease, protocols that align with the regional clinical practice should also improve acceptance and cost-effectiveness. Communication and collaboration between academic institutions, pharmaceutical companies, and regulatory agencies should help to ensure accessible, affordable, and sustainable health care for all.

5.
Explor Target Antitumor Ther ; 4(6): 1145-1156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213540

RESUMEN

Aim: The present study aims to generate chimeric mouse single-chain variable fragment (scFv) and immunoglobulin G1 (IgG1) crystallizable fragment (Fc) antibody against disialoganglioside (GD2) for the treatment of neuroblastoma (NB). The generated scFv-IgG Fc antibody, lacking first constant domain of heavy chain (CH1), is of a smaller size than the natural antibody and has anti-tumor activity. Methods: Vector for scFv-IgG Fc antibody was constructed and scFv-IgG Fc antibody was expressed in human embryonic kidney 293T (HEK293T) cell line. Purification of scFv-IgG Fc antibody from the culture supernatant of transfected HEK293T cells was performed by Protein G affinity chromatography. The structure and binding activity of scFv-IgG Fc antibody were verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting (WB), and immunofluorescence techniques. Anti-tumor activities by antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) were determined. Results: Using plasmid fusion-human IgG1-Fc2 tag vector (pFUSE-hIgG1-Fc2), a plasmid vector encoding chimeric mouse scFv and hIgG1 Fc antibody against GD2 was successfully constructed. This vector was transfected into human HEK293T cells to produce scFv-IgG Fc antibody. The transfected HEK293T cells could produce chimeric scFv-IgG Fc antibody against GD2, which lacks the IgG heavy chain CH1 domain but carries CH2 and CH3 domains. The chimeric antibodies could be purified from the culture supernatant of the transfected HEK293T culture in the presence of zeocin drug. The produced GD2 scFv-IgG Fc antibodies, which are smaller in size than the intact antibody, could trigger the killing of GD2 expressed NB cell line SH-SY5Y by ADCC and ADCP mechanisms. Conclusions: The results indicate that chimeric scFv-hIgG Fc antibody, lacking heavy chain CH1 domain, could mediate antibody induced anti-tumor activities. The small size of this type of chimeric antibody may be employed as anti-GD2 antibody for NB therapy.

6.
Lung Cancer ; 166: 135-142, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278766

RESUMEN

INTRODUCTION: Topotecan is approved as second-line treatment for small cell lung cancer (SCLC). Irinotecan is also frequently used given its more convenient schedule and superior tolerability. Preclinical studies support disialoganglioside (GD2) as an SCLC target and the combination of dinutuximab, an anti-GD2 antibody, plus irinotecan in this setting. We tested dinutuximab/irinotecan versus irinotecan or topotecan as second-line therapy in relapsed/refractory (RR) SCLC. MATERIALS AND METHODS: Patients with RR SCLC and Eastern Cooperative Oncology Group performance status 0-1 were randomized 2:2:1 to receive dinutuximab 16-17.5 mg/m2 intravenous (IV)/irinotecan 350 mg/m2 IV (day 1), irinotecan 350 mg/m2 IV (day 1), or topotecan 1.5 mg/m2 IV (days 1-5) in 21-day cycles. The primary endpoint was overall survival (OS); secondary endpoints were progression-free survival (PFS), objective response rate (ORR; complete response [CR] + partial response [PR]), and clinical benefit rate (CBR; CR + PR + stable disease). Safety/tolerability were also assessed. RESULTS: A total of 471 patients were randomized to dinutuximab/irinotecan (n = 187), irinotecan (n = 190), or topotecan (n = 94). Age, sex, performance status, prior therapies, and metastatic disease sites were similar between groups. Survival and response rates were not improved for patients receiving dinutuximab/irinotecan versus those receiving irinotecan or topotecan (median OS 6.9 vs 7.0 vs 7.4 months [p = 0.3132]; median PFS 3.5 vs 3.0 vs 3.4 months [p = 0.3482]; ORR confirmed 17.1% vs 18.9% vs 20.2% [p = 0.8043]; and CBR 67.4% vs 58.9% vs 68.1% [p = 0.0989]), respectively. Grade 3/4 adverse events (≥5% receiving dinutuximab/irinotecan) included neutropenia, anemia, diarrhea, and asthenia. CONCLUSIONS: Dinutuximab/irinotecan treatment did not result in improved OS in RR SCLC versus irinotecan alone. Irinotecan administered every 21 days demonstrated comparable activity to topotecan administered daily × 5 every 21 days. CLINICALTRIALS: gov Identifier. NCT03098030.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos , Irinotecán/uso terapéutico , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/patología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Topotecan/uso terapéutico
7.
Clin Transl Radiat Oncol ; 34: 42-50, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35345864

RESUMEN

Purpose: This retrospective study sought to identify predictors of metastatic site failure (MSF) at new and/or original (present at diagnosis) sites in high-risk neuroblastoma patients. Methods and materials: Seventy-six high-risk neuroblastoma patients treated on four institutional prospective trials from 1997 to 2014 with induction chemotherapy, surgery, myeloablative chemotherapy, stem-cell rescue, and were eligible for consolidative primary and metastatic site (MS) radiotherapy were eligible for study inclusion. Computed-tomography and I-123 MIBG scans were used to assess disease response and Curie scores at diagnosis, post-induction, post-transplant, and treatment failure. Outcomes were described using the Kaplan-Meier estimator. Cox proportional hazards frailty (cphfR) and CPH regression (CPHr) were used to identify covariates predictive of MSF at a site identified either at diagnosis or later. Results: MSF occurred in 42 patients (55%). Consolidative MS RT was applied to 30 MSs in 10 patients. Original-MSF occurred in 146 of 383 (38%) non-irradiated and 18 of 30 (60%) irradiated MSs (p = 0.018). Original- MSF occurred in post-induction MIBG-avid MSs in 68 of 81 (84%) non-irradiated and 12 of 14 (85%) radiated MSs (p = 0.867). The median overall and progression-free survival rates were 61 months (95% CI 42.6-Not Reached) and 24.1 months (95% CI 16.5-38.7), respectively. Multivariate CPHr identified inability to undergo transplant (HR 32.4 95%CI 9.3-96.8, p < 0.001) and/or maintenance chemotherapy (HR 5.2, 95%CI 1.7-16.2, p = 0.005), and the presence of lung metastases at diagnosis (HR 4.4 95%CI 1.7-11.1, p = 0.002) as predictors of new MSF. The new MSF-free survival rate at 3 years was 25% and 87% in patients with and without high-risk factors. Conclusions: Incremental improvements in systemic therapy influence the patterns and type of metastatic site failure in neuroblastoma. Persistence of MIBG-avidity following induction chemotherapy and transplant at MSs increased the hazard for MSF.

8.
Cancer Immunol Immunother ; 71(1): 71-83, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34023958

RESUMEN

Immunotherapy with anti-GD2 monoclonal antibodies (mAbs) provides some benefits for patients with neuroblastoma (NB). However, the therapeutic efficacy remains limited, and treatment is associated with significant neuropathic pain. Targeting O-acetylated GD2 (OAcGD2) by 8B6 mAb has been proposed to avoid pain by more selective tumor cell targeting. Thorough understanding of its mode of action is necessary to optimize this treatment strategy. Here, we found that 8B6-mediated antibody-dependent cellular phagocytosis (ADCP) performed by macrophages is a key effector mechanism. But efficacy is limited by upregulation of CD47 expression on neuroblastoma cells in response to OAcGD2 mAb targeting, inhibiting 8B6-mediated ADCP. Antibody specific for the CD47 receptor SIRPα on macrophages restored 8B6-induced ADCP of CD47-expressing NB cells and improved the antitumor activity of 8B6 mAb therapy. These results identify ADCP as a critical mechanism for tumor cytolysis by anti-disialoganglioside mAb and support a combination with SIRPα blocking agents for effective neuroblastoma therapy.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos de Diferenciación/química , Neuroblastoma/inmunología , Fagocitosis , Receptores Inmunológicos/química , Animales , Anticuerpos/química , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antineoplásicos Inmunológicos/farmacología , Antígeno CD47/biosíntesis , Línea Celular Tumoral , Citometría de Flujo , Gangliósidos/química , Humanos , Inmunoterapia/métodos , Macrófagos/metabolismo , Ratones , Microscopía Fluorescente , Neuroblastoma/metabolismo , Regulación hacia Arriba
9.
Cancer Immunol Immunother ; 71(1): 153-164, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34043024

RESUMEN

Neuroblastoma (NBL) accounts for a disproportionate number of deaths among childhood malignancies despite intensive multimodal therapy that includes antibody targeting disialoganglioside GD2, a NBL antigen. Unfortunately, resistance to anti-GD2 immunotherapy is frequent and we aimed to investigate mechanisms of resistance in NBL. GD2 expression was quantified by flow cytometry and anti-GD2 antibody internalization was measured using real-time microscopy in 20 human NBL cell lines. Neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) assays were performed on a subset of the cell lines (n = 12), and results were correlated with GD2 expression and antibody internalization. GD2 was expressed on 19 of 20 NBL cell lines at variable levels, and neutrophil-mediated ADCC was observed only in GD2-expressing cell lines. We found no correlation between level of GD2 expression and sensitivity to neutrophil-mediated ADCC, suggesting that GD2 expression of many cell lines was above a threshold required for maximal ADCC, such that expression level could not be used to predict subsequent cytotoxicity. Instead, anti-GD2 antibody internalization, a process that occurred universally but differentially across GD2-expressing NBL cell lines, was inversely correlated with ADCC. Treatment with endocytosis inhibitors EIPA, chlorpromazine, MBCD, and cytochalasin-D showed potential to inhibit antibody internalization; however, only MBCD resulted in significantly increased sensitivity to neutrophil-mediated ADCC in 4 of 4 cell lines in vitro. Our data suggest that antibody internalization may represent a novel mechanism of immunotherapy escape by NBL and provide proof-of-principle that targeting pathways involved in antibody internalization may improve the efficacy of anti-GD2 immunotherapies.


Asunto(s)
Anticuerpos/química , Resistencia a Medicamentos , Gangliósidos/química , Inmunoterapia/métodos , Neuroblastoma/inmunología , Neuroblastoma/terapia , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Línea Celular Tumoral , Endocitosis , Citometría de Flujo , Gangliósidos/inmunología , Humanos , Factores Inmunológicos , Células Asesinas Naturales/inmunología , Neutrófilos/metabolismo
10.
Cancers (Basel) ; 13(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34771738

RESUMEN

The disialoganglioside GD2 is a tumor-associated antigen that may allow for the application of targeted immunotherapies (anti-GD2 antibodies, GD2 CAR T cells) in patients with neuroblastoma and other solid tumors. We retrospectively investigated GD2 expression in a breast cancer cohort, using immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays (TMAs), and its impact on survival. GD2 expression on IHC (n = 568) and IF (n = 503) was investigated in relation to subtypes and patient outcome. Overall, 50.2% of the 568 IHC-assessed samples and 69.8% of the 503 IF-assessed samples were GD2-positive. The highest proportion of GD2-positive tumors was observed in luminal tumors. Significantly fewer GD2-positive cases were detected in triple-negative breast cancer (TNBC) compared with other subtypes. The proportion of GD2-expressing tumors were significantly lower in HER2-positive breast cancer in comparison with luminal tumors on IF staining (but not IHC). GD2 expression of IHC or IF was not significantly associated with disease-free or overall survival, in either the overall cohort or in individual subtypes. However, GD2 expression can be seen in more than 50% of breast cancer cases, with the highest frequency in hormone receptor-positive tumors. With this high expression frequency, patients with GD2-positive advanced breast cancer of all subtypes may benefit from GD2-targeting immunotherapies, which are currently subject to clinical testing.

11.
Biologics ; 15: 205-219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135571

RESUMEN

Monoclonal antibodies (mAbs) are part of the standard of care for the treatment of many adult solid tumors. Until recently none have been approved for use in children with solid tumors. Neuroblastoma (NB) is the most common extracranial solid tumor in children. Those with high-risk disease, despite treatment with very intensive multimodal therapy, still have poor overall survival. Results of treatment with an immunotherapy regimen using a chimeric (human/mouse) mAb against a cell surface disialoganglioside (GD2) have changed the standard of care for these children and resulted in the first approval of a mAb for use in children with solid tumors. This article will review the use of the various anti-GD2 mAbs in children with NB, methods that have been or are being evaluated for enhancing their efficacy, as well as review other promising antigenic targets for the therapeutic use of mAbs in children with NB.

12.
Transl Oncol ; 14(2): 100971, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321428

RESUMEN

A novel disialoganglioside 2 (GD2)-specific chimeric antigen receptor (CAR)-modified T cell therapy against retinoblastoma (RB) were generated. GD2-CAR consists of a single-chain variable fragment (scFv) derived from a monoclonal antibody, hu3F8, that is linked with the cytoplasmic signaling domains of CD28, 41BB, a CD3ζ, and an inducible caspase 9 death fusion partner. GD2 antigen is highly expressed in Y79RB cell line and in several surgical RB tumor specimens. In vitro co-culture experiments revealed the effective killing of Y79RB cells by GD2-CAR T cells, but not by control CD19-CAR T cells. The killing activities of GD2-CAR T cells were diminished when repeatedly exposed to the tumor, due to an attenuated expression of GD2 antigen on tumor cells and upregulation of inhibitory molecules of the PD1 and PD-L1 axis in the CAR T cells and RB tumor cells respectively. This is the first report to describe the potential of GD2-CAR T cells as a promising therapeutic strategy for RB with the indication of potential benefit of combination therapy with immune checkpoint inhibitors.

13.
Adv Exp Med Biol ; 1277: 75-85, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119866

RESUMEN

Neuroblastoma is a solid tumor (a lump or mass), often found in the small glands on top of the kidneys, and most commonly affects infants and young children. Among neuroblastomas, high-risk neuroblastomas are very aggressive and resistant to most kinds of intensive treatment. Immunotherapy, which uses the immune system to fight against cancer, has shown great promise in treating many types of cancer. However, high-risk neuroblastoma is often resistant to this approach as well. Recent studies revealed that small vesicles known as exosomes, which are envelopes, could deliver a cargo of small RNA molecules and provide communication between neuroblastoma cells and the surrounding cells and trigger metastasis and resistance to immunotherapy. In this chapter, we describe the role of exosomes and small RNA molecules in the metastasis and regression of neuroblastoma and the potential therapeutic approaches to combat this menace.


Asunto(s)
Resistencia a Antineoplásicos , Exosomas , Neuroblastoma , Niño , Preescolar , Exosomas/genética , Humanos , Inmunoterapia , Neuroblastoma/genética , Neuroblastoma/terapia
14.
Molecules ; 25(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204392

RESUMEN

One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface ligand attachment, etc. AgNPs cellular uptake involves different endocytosis mechanisms, including lipid raft-mediated endocytosis. Since static magnetic fields (SMFs) exposure induces plasma membrane perturbation, including the rearrangement of lipid rafts, we investigated whether SMF could increase the amount of AgNPs able to pass the peripheral blood lymphocytes (PBLs) plasma membrane. To this purpose, the effect of 6-mT SMF exposure on the redistribution of two main lipid raft components (i.e., disialoganglioside GD3, cholesterol) and on AgNPs uptake efficiency was investigated. Results showed that 6 mT SMF: (i) induces a time-dependent GD3 and cholesterol redistribution in plasma membrane lipid rafts and modulates gene expression of ATP-binding cassette transporter A1 (ABCA1), (ii) increases reactive oxygen species (ROS) production and lipid peroxidation, (iii) does not induce cell death and (iv) induces lipid rafts rearrangement, that, in turn, favors the uptake of AgNPs. Thus, it derives that SMF exposure could be exploited to enhance the internalization of NPs-loaded therapeutic or diagnostic molecules.


Asunto(s)
Linfocitos/citología , Microdominios de Membrana/metabolismo , Plata/farmacocinética , Transportador 1 de Casete de Unión a ATP , Adulto , Transporte Biológico , Endocitosis , Femenino , Humanos , Peroxidación de Lípido , Linfocitos/química , Campos Magnéticos , Masculino , Nanopartículas del Metal , Especies Reactivas de Oxígeno/metabolismo , Plata/química
15.
Crit Rev Oncol Hematol ; 138: 38-43, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31092383

RESUMEN

Neuroblastoma is the most common solid extracranial tumor in pediatrics and can regress spontaneously or grow and metastasize with resistance to multiple therapeutic approaches. The prognosis and approach to treatment depends on the tumor presentation and whether it expresses certain drivers such as MYCN, ALK, and TrkB. Expression or mutation of these genes and kinases correlates with high-risk and poor prognosis. Multiple therapeutic approaches are being used to target MYCN, ALK, and TrkB, as well as GD2, a surface antigen present on the surface of neuroblastoma tumor cells. This review discusses the nature of these targets and several current therapies for neuroblastoma. A focus is placed on recent therapeutic developments including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy.


Asunto(s)
Terapia Molecular Dirigida/métodos , Neuroblastoma/terapia , Niño , Humanos , Inmunoterapia/métodos , Terapia Molecular Dirigida/tendencias , Radioterapia/métodos
16.
J Bone Oncol ; 16: 100231, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30956944

RESUMEN

Over the past few decades, there has been growing interest in understanding the molecular mechanisms of cancer pathogenesis and progression, as it is still associated with high morbidity and mortality. Current management of large bone sarcomas typically includes the complex therapeutic approach of limb salvage or sacrifice combined with pre- and postoperative multidrug chemotherapy and/or radiotherapy, and is still associated with high recurrence rates. The development of cellular strategies against specific characteristics of tumour cells appears to be promising, as they can target cancer cells selectively. Recently, Mesenchymal Stromal Cells (MSCs) have been the subject of significant research in orthopaedic clinical practice through their use in regenerative medicine. Further research has been directed at the use of MSCs for more personalized bone sarcoma treatments, taking advantage of their wide range of potential biological functions, which can be augmented by using tissue engineering approaches to promote healing of large defects. In this review, we explore the use of MSCs in bone sarcoma treatment, by analyzing MSCs and tumour cell interactions, transduction of MSCs to target sarcoma, and their clinical applications on humans concerning bone regeneration after bone sarcoma extraction.

17.
J Biol Chem ; 294(12): 4437-4449, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670592

RESUMEN

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is only sparsely expressed on healthy tissue. GD2 is a primary target for the development of immunotherapy for neuroblastoma. Immunotherapy with monoclonal anti-GD2 antibodies has proven safety and efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. Strategies to modulate GD2 expression in neuroblastoma could further improve anti-GD2-targeted immunotherapy. Here, we report that the cellular sialylation pathway, as well as epigenetic reprogramming, strongly modulates GD2 expression in human and mouse neuroblastoma cell lines. Recognition of GD2 by the 14G2a antibody is sialic acid-dependent and was blocked with the fluorinated sialic acid mimetic Ac53FaxNeu5Ac. Interestingly, sialic acid supplementation using a cell-permeable sialic acid analogue (Ac5Neu5Ac) boosted GD2 expression without or with minor alterations in overall cell surface sialylation. Furthermore, sialic acid supplementation with Ac5Neu5Ac combined with various histone deacetylase (HDAC) inhibitors, including vorinostat, enhanced GD2 expression in neuroblastoma cells beyond their individual effects. Mechanistic studies revealed that Ac5Neu5Ac supplementation increased intracellular CMP-Neu5Ac concentrations, thereby providing higher substrate levels for sialyltransferases. Furthermore, HDAC inhibitor treatment increased mRNA expression of the sialyltransferases GM3 synthase (ST3GAL5) and GD3 synthase (ST8SIA1), both of which are involved in GD2 biosynthesis. Our findings reveal that sialic acid analogues and HDAC inhibitors enhance GD2 expression and could potentially be employed to boost anti-GD2 targeted immunotherapy in neuroblastoma patients.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Gangliósidos/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácido N-Acetilneuramínico/farmacología , Neuroblastoma/inmunología , Regulación hacia Arriba/efectos de los fármacos , Animales , Línea Celular Tumoral , Inmunoterapia , Ratones , Neuroblastoma/enzimología , Neuroblastoma/patología , Neuroblastoma/terapia , Sialiltransferasas/metabolismo
18.
Clin Mass Spectrom ; 14 Pt B: 106-114, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34917767

RESUMEN

BACKGROUND: Among Amish communities of North America, biallelic mutations of ST3GAL5 (c.694C > T) eliminate synthesis of GM3 and its derivative downstream a- and b-series gangliosides. Systemic ganglioside deficiency is associated with infantile onset psychomotor retardation, slow brain growth, intractable epilepsy, deafness, and cortical visual impairment. We developed a robust quantitative assay to simultaneously characterize glycan and ceramide moieties of plasma glycosphingolipids (GSLs) among ST3GAL5 c.694C > T homozygotes (n = 8), their heterozygous siblings (n = 24), and wild type control (n = 19) individuals. METHODS: Following extraction and saponification of total plasma lipids, GSLs were purified on a tC18 cartridge column, permethylated, and subjected to nanospray ionization mass spectrometry utilizing neutral loss scanning and data-dependent acquisition. Plasma GSLs were quantified against appropriate synthetic standards. RESULTS: Our method demonstrated linearity from 5 to 250 µl of plasma. Recovery of synthetic GSLs spiked into plasma was 99-104% with no matrix interference. Quantitative plasma GSL profiles discriminated among ST3GAL5 genotypes: GM3 and GD3 were undetectable in ST3GAL5 c.694C > T homozygotes, who had markedly elevated lactosylceramide (19.17 ±â€¯4.20 nmol/ml) relative to heterozygous siblings (9.62 ±â€¯2.46 nmol/ml) and wild type controls (6.55 ±â€¯2.16 nmol/ml). Children with systemic ganglioside deficiency had a distinctive shift in ceramide composition toward higher mass species. CONCLUSIONS: Our quantitative glycolipidomics method discriminates among ST3GAL5 c.694C > T genotypes, can reveal subtle structural heterogeneity, and represents a useful new strategy to diagnose and monitor GSL disorders in humans.

19.
Pediatr Dev Pathol ; 21(4): 355-362, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29067879

RESUMEN

Neuroblastoma, a malignant neoplasm of the sympathetic nervous system, is one of the most aggressive pediatric cancers. Patients with stage IV high-risk neuroblastoma receive an intensive multimodal therapy ending with an immunotherapy based on a chimeric monoclonal antibody ch14.18. Although the use of ch14.18 monoclonal antibody has significantly increased the survival rate of high-risk neuroblastoma patients, about 33% of these patients still relapse and die from their disease. Ch14.18 targets the disialoganglioside, GD2, expressed on neuroblastic tumor (NT) cells. To better understand the causes of tumor relapse following ch14.18 immunotherapy, we have analyzed the expression of GD2 in 152 tumor samples from patients with NTs using immunohistochemical stainings. We observed GD2 expression in 146 of 152 samples (96%); however, the proportion of GD2-positive cells varied among samples. Interestingly, low percentage of GD2-positive cells before immunotherapy was associated with relapse in patients receiving ch14.18 immunotherapy. In addition, we demonstrated in vitro that the sensitivity of neuroblastoma cell lines to natural killer-mediated lysis was dependent on the proportion of GD2-positive cells, in the presence of ch14.18 antibody. In conclusion, our results indicate that the proportion of tumor cells expressing GD2 in NTs should be taken in consideration, as a prognostic marker, for high-risk neuroblastoma patients receiving anti-GD2 immunotherapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Gangliósidos/metabolismo , Neuroblastoma/metabolismo , Adolescente , Niño , Preescolar , Femenino , Estudios de Seguimiento , Gangliósidos/antagonistas & inhibidores , Humanos , Inmunohistoquímica , Lactante , Recién Nacido , Masculino , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/etiología , Neuroblastoma/diagnóstico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Pronóstico , Resultado del Tratamiento
20.
Oncoimmunology ; 6(6): e1320625, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680755

RESUMEN

Chimeric antigen receptors (CAR) and bispecific antibodies (BsAb) are two powerful immunotherapy approaches for retargeting lymphocytes toward cancer cells. Despite their success in lymphoblastic leukemia, solid tumors have been more recalcitrant. Identifying therapeutic barriers facing CAR-modified (CART) or BsAb-redirected T (BsAb-T) cells should facilitate their clinical translation to solid tumors. Novel lentiviral vectors containing low-affinity or high-affinity 4-1BB second-generation anti-GD2 (disialoganglioside) CARs were built to achieve efficient T cell transduction. The humanized anti-GD2 × CD3 BsAb using the IgG-scFv platform was described previously. CART and BsAb-engaged T cells were tested for viability, proliferation, and activation/exhaustion marker expression, and in vitro cytotoxicity against GD2(+) tumor cells. The antitumor effect of CAR-grafted and BsAb-T cells was compared in a human melanoma xenograft model. The majority of high CAR density T cells were depleted upon exposure to GD2(+) target cells while the BsAb-T cells survived. The in vitro cytotoxicity of the surviving CART cells was inferior to that of the BsAb-T cells. Using low-affinity CARs, inclusion of the 4-1BB co-stimulatory domain or exclusion of a co-stimulatory domain, or blocking PD1 did not prevent CART cell depletion. Both CART cells and BsAb-T cells penetrated established subcutaneous human melanoma xenografts; while both induced tumor regression, BsAb was more efficient. The fate of T cells activated by BsAb differs substantially from that by CAR, translating into a more robust antitumor effect both in vitro and in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA