Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727384

RESUMEN

Motivated by the recent observation of Klein tunneling in 8-Pmmn borophene, we delve into the phenomenon in ß12 borophene by employing tight-binding approximation theory to establish a theoretical mode. The tight-binding model is a semi-empirical method for establishing the Hamiltonian based on atomic orbitals. A single cell of ß12 borophene contains five atoms and multiple central bonds, so it creates the complexity of the tight-binding model Hamiltonian of ß12 borophene. We investigate transmission across one potential barrier and two potential barriers by changing the width and height of barriers and the distance between two potential barriers. Regardless of the change in the barrier heights and widths, we find the interface to be perfectly transparent for normal incidence. For other angles of incidence, perfect transmission at certain angles can also be observed. Furthermore, perfect and all-angle transmission across a potential barrier takes place when the incident energy approaches the Dirac point. This is analogous to the "super", all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier. These findings highlight the significance of our theoretical model in understanding the complex dynamics of Klein tunneling in borophene structures.

2.
Nano Lett ; 24(6): 1867-1873, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306119

RESUMEN

Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.

3.
Nano Lett ; 24(7): 2175-2180, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38181506

RESUMEN

Silicene, a single layer of Si atoms, shares many remarkable electronic properties with graphene. So far, silicene has been synthesized in its epitaxial form on a few surfaces of solids. Thus, the problem of silicene-substrate interaction appears, which usually depresses the original electronic behavior but may trigger properties superior to those of bare components. We report the direct observation of robust Dirac-dispersed bands in epitaxial silicene grown on Au(111) films deposited on Si(111). By performing in-depth angle-resolved photoemission spectroscopy measurements, we reveal three pairs of one-dimensional bands with linear dispersion running in three different directions of an otherwise two-dimensional system. By combining these results with first-principles calculations, we explore the nature of these bands and point to strong interaction between subsystems forming a complex Si-Au heterostructure. These findings emphasize the essential role of interfacial coupling and open a unique materials platform for exploring exotic quantum phenomena and applications in future-generation nanoelectronics.

4.
Small ; : e2309962, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072630

RESUMEN

Emergent fermions arising from the excess electrons of electrides provide a new perspective for exploring semimetal states with unique Fermi surface geometries. In this study, a class of unique two-dimensional (2D) highly anisotropic Dirac fermions is designed using a sandwich structure. Based on the structural design and first-principles calculations, 2D electride MB (M = Ca/Sr, B = Cl/Br/I) is an ideal candidate material. The excess electrons of the bilayer MB could be stably localized in the interstitial cavities, constructing a natural zigzag honeycomb electron sublattice that further forms a Dirac fermion. Compared with traditional Dirac semimetals, 2D Dirac electrides exhibited rich physical properties: i) The Fermi surface shows trigonal warping in low-energy regions. In particular, the geometry of the Fermi surface determines the high anisotropy of the Fermi velocity. ii) A pair of Dirac fermions are protected by three-fold rotational symmetry and exhibit strong robustness. iii) Electride MB possesses a lower work function that strongly correlates with the surface area of the emission channel. Based on these properties, an electron-emitting device with multifunctional applications is fabricated. Therefore, this study provides an ideal platform for studying potential entanglement between structures, electrides, and topological states.

5.
Nano Lett ; 23(17): 7961-7967, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37624091

RESUMEN

We report on the Tomonaga-Luttinger liquid (TLL) behavior in fully degenerate 1D Dirac Fermions. A ternary van der Waals material Nb9Si4Te18 incorporates in-plane NbTe2 chains, which produce a 1D Dirac band crossing Fermi energy. Tunneling conductance of electrons confined within NbTe2 chains is found to be substantially suppressed at Fermi energy, which follows a power law with a universal temperature scaling, hallmarking a TLL state. The obtained Luttinger parameter of ∼0.15 indicates a strong electron-electron interaction. The TLL behavior is found to be robust against atomic-scale defects, which might be related to the Dirac electron nature. These findings, combined with the tunability of the compound and the merit of a van der Waals material, offer a robust, tunable, and integrable platform to exploit non-Fermi liquid physics.

6.
Adv Mater ; 35(21): e2300640, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37012602

RESUMEN

Quantum critical points separating weak ferromagnetic and paramagnetic phases trigger many novel phenomena. Dynamical spin fluctuations not only suppress the long-range order, but can also lead to unusual transport and even superconductivity. Combining quantum criticality with topological electronic properties presents a rare and unique opportunity. Here, by means of ab initio calculations and magnetic, thermal, and transport measurements, it is shown that the orthorhombic CoTe2 is close to ferromagnetism, which appears suppressed by spin fluctuations. Calculations and transport measurements reveal nodal Dirac lines, making it a rare combination of proximity to quantum criticality and Dirac topology.

7.
J Phys Condens Matter ; 35(14)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36745922

RESUMEN

The recent discovery of superconductivity in magic-angle twisted bilayer graphene (TBLG) has sparked a renewed interest in the strongly-correlated physics ofsp2carbons, in stark contrast to preliminary investigations which were dominated by the one-body physics of the massless Dirac fermions. We thus provide a self-contained, theoretical perspective of the journey of graphene from its single-particle physics-dominated regime to the strongly-correlated physics of the flat bands. Beginning from the origin of the Dirac points in condensed matter systems, we discuss the effect of the superlattice on the Fermi velocity and Van Hove singularities in graphene and how it leads naturally to investigations of the moiré pattern in van der Waals heterostructures exemplified by graphene-hexagonal boron-nitride and TBLG. Subsequently, we illuminate the origin of flat bands in TBLG at the magic angles by elaborating on a broad range of prominent theoretical works in a pedagogical way while linking them to available experimental support, where appropriate. We conclude by providing a list of topics in the study of the electronic properties of TBLG not covered by this review but may readily be approached with the help of this primer.

8.
Small ; 19(1): e2205329, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36344449

RESUMEN

The exotic electronic properties of topological semimetals (TSs) have opened new pathways for innovative photonic and optoelectronic devices, especially in the highly pursuit terahertz (THz) band. However, in most cases Dirac fermions lay far above or below the Fermi level, thus hindering their successful exploitation for the low-energy photonics. Here, low-energy type-II Dirac fermions in kitkaite (NiTeSe) for ultrasensitive THz detection through metal-topological semimetal-metal heterostructures are exploited. Furthermore, a heterostructure combining two Dirac materials, namely, graphene and NiTeSe, is implemented for a novel photodetector exhibiting a responsivity as high as 1.22 A W-1 , with a response time of 0.6 µs, a noise-equivalent power of 18 pW Hz-0.5 , with outstanding stability in the ambient conditions. This work brings to fruition of Dirac fermiology in THz technology, enabling self-powered, low-power, room-temperature, and ultrafast THz detection.

9.
Adv Mater ; 34(42): e2205996, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36043946

RESUMEN

Moiré superlattices that consist of two or more layers of 2D materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional superconductivity, and quantum anomalous Hall effect. Recently, magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the as-yet unexplored band structure of MATTG near charge neutrality is systematically measured. These measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.

10.
Nanomaterials (Basel) ; 12(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889716

RESUMEN

Mercury telluride (HgTe) thin films with a critical thickness of 6.5 nm are predicted to possess a gapless Dirac-like band structure. We report a comprehensive study on gated and optically doped samples by magnetooptical spectroscopy in the THz range. The quasi-classical analysis of the cyclotron resonance allowed the mapping of the band dispersion of Dirac charge carriers in a broad range of electron and hole doping. A smooth transition through the charge neutrality point between Dirac holes and electrons was observed. An additional peak coming from a second type of holes with an almost density-independent mass of around 0.04m0 was detected in the hole-doping range and attributed to an asymmetric spin splitting of the Dirac cone. Spectroscopic evidence for disorder-induced band energy fluctuations could not be detected in present cyclotron resonance experiments.

11.
J Phys Condens Matter ; 34(36)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35767975

RESUMEN

Massless Dirac fermions in an electric field propagate along the field lines without backscattering, due to the combination of spin-momentum locking and spin conservation. This phenomenon, known as 'Klein tunneling', may be lost if the Dirac equation is discretized in space and time, because of scattering between multiple Dirac cones in the Brillouin zone. To avoid this, a staggered space-time lattice discretization has been developed in the literature, withonesingle Dirac cone in the Brillouin zone of the original square lattice. Here we show that the staggering doubles the size of the Brillouin zone, which actually containstwoDirac cones. We find that this fermion doubling causes a spurious breakdown of Klein tunneling, which can be avoided by an alternative single-cone discretization scheme based on a split-operator approach.

12.
Adv Mater ; 34(26): e2200625, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35446987

RESUMEN

Tuning interactions between Dirac states in graphene has attracted enormous interest because it can modify the electronic spectrum of the 2D material, enhance electron correlations, and give rise to novel condensed-matter phases such as superconductors, Mott insulators, Wigner crystals, and quantum anomalous Hall insulators. Previous works predominantly focus on the flat band dispersion of coupled Dirac states from different twisted graphene layers. In this work, a new route to realizing flat band physics in monolayer graphene under a periodic modulation from substrates is proposed. Graphene/SiC heterostructure is taken as a prototypical example and it is demonstrated experimentally that the substrate modulation leads to Dirac fermion cloning and, consequently, the proximity of the two Dirac cones of monolayer graphene in momentum space. Theoretical modeling captures the cloning mechanism of the Dirac states and indicates that moiré flat bands can emerge at certain magic lattice constants of the substrate, specifically when the period of modulation becomes nearly commensurate with the ( 3 × 3 ) R 30 o \[(\sqrt 3 \; \times \;\sqrt 3 )R{30^o}\] supercell of graphene. The results show that epitaxial single monolayer graphene on suitable substrates is a promising platform for exploring exotic many-body quantum phases arising from interactions between Dirac electrons.

13.
Nano Lett ; 22(2): 695-701, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029399

RESUMEN

Dirac materials, which feature Dirac cones in the reciprocal space, have been one of the hottest topics in condensed matter physics in the past decade. To date, 2D and 3D Dirac Fermions have been extensively studied, while their 1D counterparts are rare. Recently, Si nanoribbons (SiNRs), which are composed of alternating pentagonal Si rings, have attracted intensive attention. However, the electronic structure and topological properties of SiNRs are still elusive. Here, by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy measurements, first-principles calculations, and tight-binding model analysis, we demonstrate the existence of 1D Dirac Fermions in SiNRs. Our theoretical analysis shows that the Dirac cones derive from the armchairlike Si chain in the center of the nanoribbon and can be described by the Su-Schrieffer-Heeger model. These results establish SiNRs as a platform for studying the novel physical properties in 1D Dirac materials.

14.
Nano Lett ; 21(21): 9332-9338, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714095

RESUMEN

Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical codopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac semimetallic phases in otherwise semiconducting graphene-like nanoribbons.

15.
Nano Lett ; 21(12): 5195-5200, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34115500

RESUMEN

We have experimentally investigated the effect of electron temperature on transport in the two-dimensional Dirac surface states of the three-dimensional topological insulator HgTe. We have found that around the minimal conductivity point, where both electrons and holes are present, heating the carriers with a DC current results in a nonmonotonic differential resistance of narrow channels. We have shown that the observed initial increase in resistance can be attributed to electron-hole scattering, while the decrease follows naturally from the change in Fermi energy of the charge carriers. Both effects are governed dominantly by a van Hove singularity in the bulk valence band. The results demonstrate the importance of interband electron-hole scattering in the transport properties of topological insulators.

16.
Nanomaterials (Basel) ; 11(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073150

RESUMEN

The tunneling of electrons and holes in quantum structures plays a crucial role in studying the transport properties of materials and the related devices. 8-Pmmn borophene is a new two-dimensional Dirac material that hosts tilted Dirac cone and chiral, anisotropic massless Dirac fermions. We adopt the transfer matrix method to investigate the Klein tunneling of massless fermions across the smooth NP junctions and NPN junctions of 8-Pmmn borophene. Like the sharp NP junctions of 8-Pmmn borophene, the tilted Dirac cones induce the oblique Klein tunneling. The angle of perfect transmission to the normal incidence is 20.4∘, a constant determined by the Hamiltonian of 8-Pmmn borophene. For the NPN junction, there are branches of the Klein tunneling in the phase diagram. We find that the asymmetric Klein tunneling is induced by the chirality and anisotropy of the carriers. Furthermore, we show the oscillation of electrical resistance related to the Klein tunneling in the NPN junctions. One may analyze the pattern of electrical resistance and verify the existence of asymmetric Klein tunneling experimentally.

17.
J Phys Condens Matter ; 33(24)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33752194

RESUMEN

The in-plane phonon-drag thermopowerSg, diffusion thermopowerSdand the power factor PF are theoretically investigated in a twisted bilayer graphene (tBLG) as a function of twist angleθ, temperatureTand electron densitynsin the region of lowT(1-20 K). Asθapproaches magic angleθm, theSgandSdare found to be strongly enhanced, which is manifestation of great suppression of effective Fermi velocityvF*of electrons in moiré flat band nearθm. This enhancement decreases with increasingθandT. In the Bloch-Grüneisen (BG) regime, it is found thatSg∼vF*-2,T3andns-1/2. AsTincreases, the exponentδinSg∼Tδ, changes from 3 to nearly zero and a maximumSgvalue of ∼10 mV K-1at ∼20 K is estimated.Sgis found to be larger (smaller) for smallernsin low (high) temperature region. On the other hand,Sd, taken to be governed by Mott formula withSd∼vF*-1,Tandns-1/2andSd≪SgforT> ∼2 K. The power factor PF is also shown to be stronglyθdependent and is very much enhanced. Consequently, possibility of a giant figure of merit is discussed. In tBLG,θacts as a strong tuning parameter of bothSgandSdand PF in addition toTandns. Our results are qualitatively compared with the measured out-of-plane thermopower in tBLG.

18.
J Phys Condens Matter ; 33(22)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33607633

RESUMEN

Graphene nano-flakes (GNFs) are predicted to host spin-polarized metallic edge states, which are envisioned for exploration of spintronics at the nanometer scale. To date, experimental realization of GNFs is only in its infancy because of the limitation of precise cutting or synthesizing methods at the nanometer scale. Here, we use low temperature scanning tunneling microscope to manipulate coronene molecules on a Cu(111) surface to build artificial triangular and hexagonal GNFs with either zigzag or armchair type of edges. We observe that an electronic state at the Dirac point emerges only in the GNFs with zigzag edges and localizes at the outmost lattice sites. The experimental results agree well with the tight-binding calculations. Our work renders an experimental confirmation of the predicated edge states of the GNFs.

19.
J Phys Condens Matter ; 33(14)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33498033

RESUMEN

Wannier functions have been widely applied in the study of topological properties and Floquet-Bloch bands of materials. Usually, the real-space Wannier functions are linked to thek-space Hamiltonian by two types of Fourier transform (FT), namely lattice-gauge FT (LGFT) and atomic-gauge FT (AGFT), but the differences between these two FTs on Floquet-Bloch bands have rarely been addressed. Taking monolayer graphene as an example, we demonstrate that LGFT gives different topological descriptions on the Floquet-Bloch bands for the structurally equivalent directions which are obviously unphysical, while AGFT is immune to this dilemma. We introduce the atomic-laser periodic effect to explain the different Floquet-Bloch bands between the LGFT and AGFT. Using AGFT, we showed that linearly polarized laser could effectively manipulate the properties of the Dirac fermions in graphene, such as the location, generation and annihilation of Dirac points. This proposal offers not only deeper understanding on the role of Wannier functions in solving the Floquet systems, but also a promising platform to study the interaction between the time-periodic laser field and materials.

20.
Proc Natl Acad Sci U S A ; 116(52): 26431-26434, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31818954

RESUMEN

Recent experimental [I. Jo et al., Phys. Rev. Lett. 119, 016402 (2017)] and numerical [M. Ippoliti, S. D. Geraedts, R. N. Bhatt, Phys. Rev. B 95, 201104 (2017)] evidence suggests an intriguing universal relationship between the Fermi surface anisotropy of the noninteracting parent 2-dimensional (2D) electron gas and the strongly correlated composite Fermi liquid formed in a strong magnetic field close to half-filling. Inspired by these observations, we explore more generally the question of anisotropy renormalization in interacting 2D Fermi systems. Using a recently developed [H. -K. Tang et al., Science 361, 570 (2018)] nonperturbative and numerically exact projective quantum Monte Carlo simulation as well as other numerical and analytic techniques, only for Dirac fermions with long-range Coulomb interactions do we find a universal square-root decrease of the Fermi-surface anisotropy. For the [Formula: see text] composite Fermi liquid, this result is surprising since a Dirac fermion ground state was only recently proposed as an alternative to the usual Halperin-Lee-Read state. Our proposed universality can be tested in several anisotropic Dirac materials including graphene, topological insulators, organic conductors, and magic-angle twisted bilayer graphene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA