Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
Más filtros











Intervalo de año de publicación
1.
Small ; : e2406866, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258360

RESUMEN

Smart or stimuli-responsive polymers have garnered significant interest in the scientific community due to their response to different stimuli like pH, temperature, light, mechanical force, etc. Mechanophoric polymer is an intriguing class of smart polymers that respond to external mechanical force by producing fluorescent moieties and can be utilized for damage detection and stress-sensing assessment. In recent reports on mechanophoric polymers, different mechanophoric motifs such as spiropyran, rhodamine, coumarin, etc. are explored. This investigation reports a new kind of mechanophoric polyurethane (PU) adduct based on Diels-Alder (DA) click chemistry. Here, an anthracene(An)-end capped tri-armed urethane system is synthesized, followed by a DA reaction using bis-(1,2,4-triazoline-3,5-dione) (bis-TAD) derivative. The incorporation of bis-TAD in the urethane system renders the anthracene inactive ("turn-off") by dismantling its conjugation as a result of a successful DA reaction. The soft PU translated into a harder material through bis-TAD linkages between polymer chains as evident from nanoindentation (NINT) analysis. The resulting material reverts back to its fluorescent "turned-on" mode owing to a force-accelerated retro-Diels-Alder (r-DA) reaction. Besides the mechanophoric attributes, the material demonstrates self-healing behavior examined by microscopic investigations. This innovative approach can be a potential route to design responsive polymers with dynamic functionalities for advanced material applications.

2.
Turk J Chem ; 48(4): 691-700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296785

RESUMEN

Two 3-(p-substituted phenyl)-3a,8a-dihydro-4H-cyclohepta[d]isoxazoles were synthesized by 1,3-dipolar cycloaddition of the corresponding nitrile oxides with cycloheptatriene. Two endoperoxides were synthesized as facially selective and single products in high yields (93%-95%) from the reactions of isoxazole derivatives with singlet oxygen. The exact configurations of the endoperoxide with a methyl group in the phenyl ring and the diol synthesized from it were confirmed by X-ray analysis. To elucidate the mechanism, the formation energy of the endoperoxide was investigated by simulations using the software package Gaussian 09 and density functional theory calculations via the M06-2X/6-311+G(d,p) level method in dichloromethane. The results were consistent with experimental findings showing the formation of isoxazole products.

3.
Front Chem ; 12: 1441539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144699

RESUMEN

Ferrocenyl conjugated oxazepine/quinoline derivatives were presented through the reaction of hexadehydro-Diels-Alder (HDDA) generated arynes with ferrocenyl oxazolines under mild conditions via ring-expanding or rearrangement processes. Water molecule participated in this unexpected rearrangement process to produce quinoline skeletons, and DFT calculations supported a ring-expanding and intramolecular hydrogen migration process for the formation of oxazepine derivatives. Two variants of this chemistry, expanded the reactivity between ferrocenyl conjugated substances and arynes, further providing an innovative approach for the synthesis of ferrocene derivatives.

4.
Chemistry ; : e202401068, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984730

RESUMEN

We report flexible synthesis of new unsymmetrically 2,6-disubstituted benzoquinones (33 examples) and a systematic study of their reactivity in the Diels-Alder reaction. The Diels-Alder reactions of selected unsymmetrical benzoquinones with seemingly similar substituents were found to proceed with high regioselectivity and the formation of selected experimentally observed main products was rationalized by theoretical (DFT) calculations. The findings can be exploited in the convenient preparation of densely substituted and stereochemically defined decalins with unique angular substituents at ring fusion. We also demonstrate the usefulness of this methodology in complex molecule synthesis through the total synthesis of a novel forskolin analog possessing an ethyl group at the fusion of the rings B and C.

5.
Materials (Basel) ; 17(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063847

RESUMEN

This work focused on obtaining a low-temperature powder coating characterized by self-healing properties. To achieve this, acrylic resin, blocked polyisocyanates (bPICs) with 1,2,4-triazole, and unsaturated commercial resin were used. The synthesis of bPICs with triazole enabled the low-temperature curing and reversible Diels-Alder (DA) reaction at 160 °C. The chemical structure of bPICs was confirmed using 1H-NMR. The occurrence of the DA and retro-DA (rDA) reactions in the crosslinked polymer, at temperatures of 60-85 °C and 90-130 °C, respectively, was confirmed using Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and FT-IR spectroscopy. The self-healing properties of the powder coating were examined using polarized optical microscopy. Additionally, the occurrence of the DA and rDA reactions between triazole and unsaturated polyester resin was investigated through repeated self-healing tests.

6.
Chemistry ; : e202401568, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037777

RESUMEN

Understanding the exohedral reactivity of metallofullerenes is crucial for its application in various fields. By systematically controlling the trapped species inside the fullerene its reactivity can be tamed. In this work we report the preferential position of 3d metal atoms inside the C36 cage and their effect on exohedral reactivity in comparison with the neutral and the dianionic cage. The Diels-Alder (DA) reaction between butadiene and all non-equivalent [5-5], [6-5] and [6-6] C-C bonds on the fullerene cage was considered for the analysis, by using density functional theory at the S12g/TZ2P level including COSMO solvation model to elucidate the complete mechanistic pathways. Our results indicate that the preferential position of the metal ion is at the position close to the upper hexagon, and that the general trend in the reactivity of bonds follows the order [5-5] > [6-5] > [6-6]. Moreover, the encapsulation of metal atoms further enhances the reactivity of these bonds, by distorting the system and delocalizing the LUMOs all over the cage.

7.
Angew Chem Int Ed Engl ; : e202411165, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995506

RESUMEN

A designed anthracene-based monomer for topochemical Diels-Alder cycloaddition polymerization crystallized with head-to-tail arrangement of molecules, as revealed by single-crystal X-ray diffraction (SCXRD) analysis. The diene and dienophile units of adjacent monomer molecules are aligned at an average distance of 4.6 Å, suggesting a favorable crystalline arrangement for their intermolecular Diels-Alder cycloaddition reaction to form a linear polymer. Surprisingly, heating the monomer crystals at a temperature above 125 °C resulted in the formation of intramolecular Diels-Alder cycloadduct, which could be characterized by various spectroscopy and SCXRD analysis. Various time-dependent studies such as NMR, PXRD, and DSC, studies established that the reaction followed topochemical pathway. Schmidt's topochemical postulates are generally used to predict the topochemical reactivity and product, by analyzing the crystal structure of the reactant. Though the crystal arrangement predicted polymerization, upon heating, the molecule avoided this pathway by undergoing a large rotation to form an intramolecular cycloadduct. Theoretical calculations supported the feasibility of the rotation, exploiting the flexibility of the molecule and voids present. These findings caution that the reliance on Schmidt's criteria for topochemical reactions may sometimes be misleading, especially in heat-induced reactions.

8.
Beilstein J Org Chem ; 20: 1308-1319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887569

RESUMEN

Tandem Diels-Alder reactions are often used for the straightforward formation of complex natural compounds and the fused polycyclic systems contained in their precursors. In the second step of this reaction, regio- and stereochemically controlled intramolecular cyclization leads to the formation of versatile nitrogen-containing tricyclic systems. However, these useful organic transformations are usually carried out in highly toxic organic solvents such as benzene, toluene, chloroform, etc. Despite recent efforts by 'green chemists', synthetic chemists still use these traditional toxic organic solvents in many of their reactions, even though safer alternatives are available. However, in addition to the harmful effects of these petrochemical solvents on the environment, the prediction that their resources will run out in the near future has led 'green chemists' to explore solvents that can be derived from renewable resources and used effectively in various organic transformations. In this context, we have shown for the first time that the 100% atom-economical tandem Diels-Alder reaction between aminofuranes and maleic anhydride can be carried out successfully in vegetable oils and waxes. The reaction was successfully carried out in sunflower seed oil, olive oil, oleic acid and lauryl myristate under mild reaction conditions. A series of epoxyisoindole-7-carboxylic acid and bisepoxyisoindole-7-carboxylic acids were obtained in good yields after a practical isolation procedure. The results obtained in this study demonstrate the potential of vegetable oils and their renewable materials to provide a reaction medium that is more sustainable than conventional organic solvents in cascade Diels-Alder reactions and can be used repeatedly without significant degradation. These materials also allow the reaction to be completed in less time, with less energy consumption and higher yields.

9.
Photochem Photobiol Sci ; 23(8): 1485-1494, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935211

RESUMEN

In this work the influence of o-fluorine substituents on the photo-dehydro-Diels-Alder (PDDA) reaction was investigated and the findings of this study were applied to the total synthesis of natural products. The reactant molecules consisted of two alkyl arylpropiolates, connected by a suberic acid tether and bearing fluorine substituents in each of the o-positions. While quantum chemical calculations suggested that a fluorine substituent prevents an attack of the adjacent carbon atom in the second C-C bond forming step of the PDDA reaction, this attack took place nevertheless. The subsequent fluoride elimination, assisted by protic solvents or trialkylsilanes, resulted in an "Umpolung" of the 4-position of the cycloallene intermediate enabling the introduction of nucleophiles at this position. The nucleophilic replacement of the second fluorine substituent could also be triggered photochemically. After removal of the tether, the two arene moieties stand nearly perpendicular to each other and a selective excitation of the naphthalene moiety was possible. This led to an intramolecular photoinduced electron transfer (PET) followed by a nucleophilic replacement of the fluoride according to a SR+N1Ar* mechanism. The formed phenolic hydroxyl group underwent spontaneous lactonization with the adjacent ester group. Based on these results, the first total synthesis of the lignan Comfreyn A and some structural analogues were developed.

10.
Angew Chem Int Ed Engl ; 63(34): e202407838, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860437

RESUMEN

The inherent chiral structures of DNA serve as attractive scaffolds to construct DNA hybrid catalysts for valuable enantioselective transformations. Duplex and G-quadruplex DNA-based enantioselective catalysis has made great progress, yet novel design strategies of DNA hybrid catalysts are highly demanding and atomistic analysis of active centers is still challenging. DNA i-motif structures could be finely tuned by different cytosine-cytosine base pairs, providing a new platform to design DNA catalysts. Herein, we found that a human telomeric i-motif DNA containing cytosine-silver(I)-cytosine (C-Ag+-C) base pairs interacting with Cu(II) ions (i-motif DNA(Ag+)/Cu2+) could catalyze Diels-Alder reactions with full conversions and up to 95 % enantiomeric excess. As characterized by various physicochemical techniques, the presence of Ag+ is proved to replace the protons in hemiprotonated cytosine-cytosine (C : C+) base pairs and stabilize the DNA i-motif to allow the acceptance of Cu(II) ions. The i-motif DNA(Ag+)/Cu2+ catalyst shows about 8-fold rate acceleration compared with DNA and Cu2+. Based on DNA mutation experiments, thermodynamic studies and density function theory calculations, the catalytic center of Cu(II) ion is proposed to be located in a specific loop region via binding to one nitrogen-7 atom of an unpaired adenine and two phosphate-oxygen atoms from nearby deoxythymidine monophosphate and deoxyadenosine monophosphate, respectively.


Asunto(s)
Cobre , Reacción de Cicloadición , ADN , Plata , Plata/química , Catálisis , ADN/química , Estereoisomerismo , Cobre/química , Citosina/química , Humanos , Emparejamiento Base
11.
Chem Pharm Bull (Tokyo) ; 72(6): 574-583, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38866495

RESUMEN

In Vietnam, the stems and roots of the Rutaceous plant Paramignya trimera (Oliv.) Burkill (known locally as "Xáo tam phân") are widely used to treat liver diseases such as viral hepatitis and acute and chronic cirrhosis. In an effort to search for Vietnamese natural compounds capable of inhibiting coronavirus based on molecular docking screening, two new dimeric coumarin glycosides, namely cis-paratrimerin B (1) and cis-paratrimerin A (2), and two previously identified coumarins, the trans-isomers paratrimerin B (3) and paratrimerin A (4), were isolated from the roots of P. trimera and tested for their anti-angiotensin-converting enzyme 2 (ACE-2) inhibitory properties in vitro. It was discovered that ACE-2 enzyme was inhibited by cis-paratrimerin B (1), cis-paratrimerin A (2), and trans-paratrimerin B (3), with IC50 values of 28.9, 68, and 77 µM, respectively. Docking simulations revealed that four biscoumarin glycosides had good binding energies (∆G values ranging from -10.6 to -14.7 kcal/mol) and mostly bound to the S1' subsite of the ACE-2 protein. The key interactions of these natural ligands include metal chelation with zinc ions and multiple H-bonds with Ser128, Glu145, His345, Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots occur naturally in both cis- and trans-diastereomeric forms. The biscoumarin glycosides Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots hold potential for further studies as natural ACE-2 inhibitors for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Cumarinas , Glicósidos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/química , Humanos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , COVID-19/virología , Rutaceae/química , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Raíces de Plantas/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación
12.
Chemistry ; 30(41): e202401449, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38749918

RESUMEN

Divergent nitrogen-containing fused polycyclic ring systems are constructed from simple starting materials via a one-pot aldehyde-alkyne-amine (A3) coupling and intramolecular Diels-Alder reaction. This domino reaction directly furnishes linear 5/5/5 and 5/5/6, or nonlinear 5/5/6/5, polycyclic rings containing an oxa-bridged fused 5/5 bicycle and a 1,6-enyne substructure. One-step derivation of the oxa-bridged 5/5 bicycle leads to a polyfunctionalized 5/5 bicycle with tetrahydrofuran fused back-to-back to pyrroline or a 6/5 bicycle with the hexahydro-1H-isoindole structure, while cycloisomerizing the enyne substructure adds an extra fused 5-membered ring to afford functionalized linear 5/5/5/5 or 5/5/5/5/5 fused ring systems from selected substrates. In addition, the one-pot product can be designed so that the alkyne moiety is hydroalkoxylated to form an additional heterocyle in a linear 5/5/5/6 or nonlinear 5/5/6/5/5 ring system. This diversity-oriented synthetic approach thus allows rapid access to an under-explored structural space for discovery of new biological or non-biological activities or functions.

13.
Biosci Biotechnol Biochem ; 88(7): 719-726, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38758077

RESUMEN

The Diels-Alder (DA) reaction, specifically referring to the [4 + 2] cycloaddition reaction in pericyclic reactions, is a process that forms two carbon-carbon covalent bonds in a single step via an electron ring transition state. Among the secondary metabolites produced by microorganisms, numerous compounds are biosynthesized through DA reactions, most of which are enzymatic. Our research group has discovered an enzyme named Diels-Alderase (DAase) that catalyzes the DA reaction in filamentous fungi, and we have been investigating its catalytic mechanism. This review describes the reported microbial DAase enzymes, with a particular focus on those involved in the construction of the decalin ring.


Asunto(s)
Reacción de Cicloadición , Naftalenos , Naftalenos/química , Naftalenos/metabolismo , Hongos/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
14.
Chemistry ; 30(45): e202401828, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818658

RESUMEN

Kekulene, a cycloarene composed of 12 fused benzene rings in a circular arrangement, exhibits a highly planar and robust structure. Kekulene has been the subject of investigation into its aromaticity and electronic structure, particularly in relation to the cyclic benzenoid. We have successfully synthesized novel bowl-shaped kekulene analogues with five-membered rings incorporated into the kekulene structure. The results of DFT calculations and VT-NMR spectra indicate that inversion of their concave-convex structures occurs at room temperature. The NICS and AICD plots predict that the Clar's type resonance structure is found in a manner analogous to the pristine kekulene, albeit with the interruption of the π-conjugation on the sp3 carbons at the five-membered rings. Despite the presence of the Clar's resonance structure, the Diels-Alder reaction proceeded smoothly with a dienophile, in contrast to the behavior of planar kekulene derivatives. This study will lead to the creation of novel bowl-shaped compounds and development of reactivity in aromatic compounds.

15.
Beilstein J Org Chem ; 20: 1001-1010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711585

RESUMEN

Natural products (NPs) are fantastic sources of inspiration for novel pharmaceuticals, oftentimes showing unique bioactivity against interesting targets. Specifically, NPs containing furan moieties show activity against a variety of diseases including fungal infections, and cancers. However, it is challenging to discover and isolate these small molecules from cell supernatant. The work described herein showcases the development of a molecular probe that can covalently modify furan moieties via a [4 + 2] Diels-Alder cycloaddition, making them easily identifiable on liquid chromatography-mass spectrometry (LC-MS). The molecular probe, which undergoes this reaction with a variety of furans, was designed with both a UV-tag and a mass tag to enable easy identification. The probe has been tested with a variety of purified furans, including natural products, methylenomycin furan (MMF) hormones, and MMF derivatives. Moreover, the molecular probe has been tested in crude supernatants of various Streptomyces strains and enables identification of MMFs.

16.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731526

RESUMEN

Thiochalcones undergo cycloaddition reactions in THF solution at 60 °C with the synthetically unexplored 1-phenyl-4H-phosphinin-4-one 1-oxide in a highly regio- and stereoselective manner, yielding hitherto unknown bicyclic P,S-heterocycles containing fused thiopyran and phosphinine rings. The stereochemical structures of two of the obtained (4+2)-cycloadducts were unambiguously assigned by means of the X-ray single-crystal analysis. Based on these assignments, a concerted mechanism of the hetero-Diels-Alder reaction via the preferred endo approach of the heterodiene from the less hindered P=O side of the phosphininone molecule is postulated to explain the established rac-(4RS,8SR,9SR,10SR)-configured (4+2)-cycloadducts isolated as major products.

17.
Top Curr Chem (Cham) ; 382(2): 18, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758483

RESUMEN

Indole, a ubiquitous and structurally versatile aromatic compound, has emerged as a key player in the synthesis of diverse heterocyclic frameworks via cycloaddition reactions. These reactions are completely atom-economical and, hence, are considered as green reactions. This review article provides a comprehensive overview of the pivotal role played by indole in the construction of complex and biologically relevant heterocyclic compounds. Here we explore the chemistry of indole-based cycloadditions, highlighting their synthetic utility in accessing a wide array of heterocyclic architectures, including cyclohepta[b]indoles, tetrahydrocarbazoles, tetrahydroindolo[3,2-c]quinoline, and indolines, among others. Additionally, we discuss the mechanistic insights that underpin these transformations, emphasizing the strategic importance of indole as a building block. The content of this article will certainly encourage the readers to explore more work in this area.


Asunto(s)
Reacción de Cicloadición , Compuestos Heterocíclicos , Indoles , Indoles/química , Indoles/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/síntesis química , Estructura Molecular
18.
Int J Biol Macromol ; 272(Pt 2): 132602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788868

RESUMEN

Tung oil is commonly utilized for coating protection in wooden products, often attracting attention for its appearance, antimicrobial capabilities, and insect-resistant coatings. However, its poor mechanical properties and poor weather resistance stem from excessive self-crosslinking of surplus conjugated double bonds and molecular chains, resulting in poor film wrinkling. Therefore, this study introduces natural rubber via the Diels-Alder reaction to consume the residual double bonds in tung oil, resulting in tung oil/natural rubber composite coatings (NRTO) with excellent mechanical properties and weather resistance. The results indicate that NRTO exhibits excellent mechanical properties, including high elongation (32 %) and strong adhesion (4.55 MPa). Furthermore, NRTO demonstrates outstanding acid resistance and UV aging resistance. Given its many benefits, NRTO film emerges as a promising candidate for substantially protecting wood surfaces in demanding environments.


Asunto(s)
Aceites de Plantas , Goma , Madera , Goma/química , Madera/química , Aceites de Plantas/química , Reacción de Cicloadición , Fenómenos Mecánicos
19.
Biosci Biotechnol Biochem ; 88(7): 733-741, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38653727

RESUMEN

Synthesis of the A/D/E-ring core compounds of maoecrystal V was achieved. The key Diels-Alder reactions between tricyclic α-methylene lactones and Kitahara-Danishefsky dienes afforded the spirocyclic core compounds in a regioselective and stereoselective manner.


Asunto(s)
Lactonas , Estereoisomerismo , Lactonas/química , Lactonas/síntesis química , Reacción de Cicloadición , Técnicas de Química Sintética , Diterpenos/síntesis química , Diterpenos/química , Compuestos de Espiro/química , Compuestos de Espiro/síntesis química , Estructura Molecular
20.
Res Sq ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38659849

RESUMEN

Carbon monoxide (CO) is an endogenous produced molecule and has shown efficacy in animal models of inflammation, organ injury, colitis and cancer metastasis. Because of its gaseous nature, there is a need for developing efficient CO delivery approaches, especially those capable of targeted delivery. In this study, we aim to take advantage of a previously reported approach of enrichment-triggered prodrug activation to achieve targeted delivery by targeting the folate receptor. The general idea is to exploit folate receptor-mediated enrichment as a way to accelerate a biomolecular Diels-Alder reaction for prodrug activation. In doing so, we first need to find ways to tune the reaction kinetics in order to ensure minimal rection without enrichment and optimal activation upon enrichment. In this feasibility study, we synthesized two diene-dienophile pairs and studied their reaction kinetics and ability to target the folate receptor. We found that folate conjugation significantly affects the reaction kinetics of the original diene-dienophile pairs. Such information will be very useful in future designs of similar targeted approaches of CO delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA