Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18195, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107380

RESUMEN

Identification of the sex of modern, fossil and archaeological animal remains offers many insights into their demography, mortality profiles and domestication pathways. However, due to many-factors, sex determination of osteological remains is often problematic. To overcome this, we have developed an innovative protocol to determine an animal's sex from tooth enamel, by applying label-free quantification (LFQ) of two unique AmelY peptides 'LRYPYP' (AmelY;[M+2] 2 + 404.7212 m/z) and 'LRYPYPSY' (AmelY;[M+2] 2 + 529.7689 m/z) that are only present in the enamel of males. We applied this method to eight modern cattle (Bos taurus) of known sex, and correctly assigned them to sex. We then applied the same protocol to twelve archaeological Bos teeth from the Neolithic site of Beisamoun, Israel (8-th-7-th millennium BC) and determined the sex of the archaeological samples. Since teeth are usually better preserved than bones, this innovative protocol has potential to facilitate sex determination in ancient and modern bovine remains that currently cannot be sexed.


Asunto(s)
Arqueología , Esmalte Dental , Análisis para Determinación del Sexo , Bovinos , Animales , Esmalte Dental/química , Masculino , Femenino , Análisis para Determinación del Sexo/métodos , Arqueología/métodos , Fósiles , Diente/anatomía & histología , Diente/química , Israel
2.
Geobiology ; 22(4): e12609, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38958391

RESUMEN

Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post-depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturation in situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47 values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth-based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite-each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (µm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.


Asunto(s)
Isótopos de Carbono , Carbonatos , Sedimentos Geológicos , Lagos , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Lagos/microbiología , Lagos/química , Isótopos de Carbono/análisis , Carbonatos/química , Carbonatos/análisis , New York , Microbiota , Ciclo del Carbono , Bacterias/metabolismo , Estaciones del Año
3.
Dent Med Probl ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037216

RESUMEN

BACKGROUND: Although the macroscopic assessment of dental caries and the assessment of bone elemental composition are quite different, efforts can be made to identify commonalities in the assessment of health and nutritional quality. Both indicators are correlated with dietary habits and are dependent on taphonomic processes occurring in the postmortem substrate. However, teeth exhibit structural resilience of their hard tissues to adverse environmental factors. OBJECTIVES: The aim of the study was to establish a correlation between the elemental composition of bones and the presence of carious lesions. MATERIAL AND METHODS: The study material consisted of the following skeletal parts: 161 permanent teeth from 36 individuals and bridge fragments of 36 ribs. The presence of caries was assessed visually using a modified International Caries Detection & Assessment System (ICDAS II) scale. The rib samples were subjected to elemental analysis (zinc (Zn), iron (Fe), magnesium (Mg), calcium (Ca), phosphorus (P), strontium (Sr), barium (Ba)) using spectroscopic methods. RESULTS: The odontological and chemical analyses did not reveal any statistically significant relationships between the Ca/P diagenesis index and dental features. Postmortem tooth loss showed a weak correlation with the diagenesis index. CONCLUSIONS: Discoloration, cracks and flaking of the dental crown surfaces may be associated with the intensity of Ca/P diagenesis. However, no significant correlation was found between these phenomena. Among other elements, only Zn levels exhibited a correlation with the caries index.

4.
R Soc Open Sci ; 11(7): 231827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021769

RESUMEN

Fossils constitute an inestimable archive of past life on the Earth. However, the stochastic processes driving decay and fossilization and overwhelmingly distorting this archive, are challenging to interpret. Consequently, concepts of exceptional or poor preservation are often subjective or arbitrarily defined. Here, we offer an alternative way to think about fossilization. We propose a mathematical description of decay and fossilization relying on the change in the relative frequency and characteristics of biogenic objects (e.g. atoms, functional groups, molecules, body parts and organisms) within an organism-fossil system. This description partitions taphonomic changes into three categories: gain, loss and alteration of state. Although the changes undergone by organisms through decay, preservation and alteration vary a lot for different organisms under different conditions, we provide a unified formalism which can be applied directly in the comparison of different assemblages, experiments and fossils. Our expression is closely related to George R. Price's famous equation for the change in evolutionary traits and can be adapted to the study of palaeontological systems and many others.

5.
Sci Justice ; 64(3): 305-313, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38735667

RESUMEN

Heat-induced fractures can be hard to distinguish from sharp force traumas. This challenge can negatively impact medico-legal analysis. The present study aimed to experimentally assess if X-ray fluorescence (XRF) can be used to detect chemical traces transferred from the blade of a sharp instrument onto both fresh and dry human bones. This was performed by inducing sharp force traumas with five different instruments on 20 fresh and 20 dry human clavicles. All bone samples were probed before and after experimental burning (at 500 °C, 700 °C, 900 °C and 1100 °C). Our results show that XRF is potentially useful for detecting iron traces in fresh human bone, both unburned and burned. However, we were not able to clearly detect iron traces from the blades in bones that have been previously inhumed, since exogenous iron acquired during diagenesis masks the iron traces originating from the blade.


Asunto(s)
Calor , Hierro , Humanos , Hierro/análisis , Espectrometría por Rayos X , Fracturas Óseas , Quemaduras , Incendios , Masculino
6.
Proc Biol Sci ; 291(2019): 20232606, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38503334

RESUMEN

The brain is thought to be among the first human organs to decompose after death. The discovery of brains preserved in the archaeological record is therefore regarded as unusual. Although mechanisms such as dehydration, freezing, saponification, and tanning are known to allow for the preservation of the brain on short time scales in association with other soft tissues (≲4000 years), discoveries of older brains, especially in the absence of other soft tissues, are rare. Here, we collated an archive of more than 4400 human brains preserved in the archaeological record across approximately 12 000 years, more than 1300 of which constitute the only soft tissue preserved amongst otherwise skeletonized remains. We found that brains of this type persist on time scales exceeding those preserved by other means, which suggests an unknown mechanism may be responsible for preservation particular to the central nervous system. The untapped archive of preserved ancient brains represents an opportunity for bioarchaeological studies of human evolution, health and disease.


Asunto(s)
Encéfalo , Sistema Nervioso Central , Humanos , Cabeza
7.
Sci Total Environ ; 915: 169830, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190920

RESUMEN

Anthropogenic pressures considerably affect coastal areas, increasing nitrogen and phosphorous loads that lead to eutrophication. Eutrophication sometimes results in hypoxic and/or anoxic conditions near the bottom water. Dissolved oxygen (DO) concentrations influence redox-sensitive nutrients, which can alter the benthic flux of nutrients. We retrieved sediment cores from two sites in the eastern and western parts of Elefsis Bay, a semi-enclosed area of the Eastern Mediterranean, Greece, during winter and summer. In the western part, seasonally hypoxic or anoxic conditions occurred. We analysed pore-water samples under normoxic, hypoxic and anoxic bottom water conditions to study the pore-water nutrient concentrations variability under different oxygen regimes. Ex situ incubation experiments were conducted at the site experiencing oxygen deficiency by manipulating the DO concentrations. The pore-water nutrient concentrations showed higher variability at the site experiencing oxygen deficiency. Notably, elevated ammonium concentrations were observed in the pore water during anoxic conditions, in the 2-20-cm sediment layer. However, the benthic fluxes of ammonium and phosphate at the 0-2-cm sediment layer were comparable under hypoxic and anoxic conditions. The results of the incubation experiments demonstrate a direct decrease in nitrate concentrations as the DO concentrations diminished in the overlying water. The incubations after re-oxygenating the overlying water show that phosphate was more efficiently scavenged when anoxic conditions prevailed in the bottom water. The incubation experiments indicate the rapid response of the seafloor to oxygen availability, particularly concerning processes that influence nitrate and phosphate concentrations. These observations highlight the dynamic nature of nutrient cycling in shallow, seasonally anoxic environments, such as Elefsis Bay, and emphasise the sensitivity of the seafloor ecosystem to changes in bottom water oxygen availability.

8.
Heliyon ; 10(2): e24309, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293448

RESUMEN

Petrographical characterization and field observations were caried out to evaluate Kamlial Formation in Bagh district, Azad Jammu and Kashmir. Based on detailed petrography, the lithic arenite consisted of quartz (20-25%), feldspar (7-11%), rock fragments (20-37%), cementing materials (11-21%), and accessory minerals. Grains are mostly angular to subrounded and poorly to moderately sorted. The analysis revealed that the lithic arenite is mineralogically immature; also, the current activity during the time of deposition was low. Polycrystalline quartz indicates that the sandstone was derived from metamorphic source, while monocrystalline quartz indicates a granitic origin. Quartz having an angular shape suggests the source rock was near the depositional site, while quartz having a rounded shape represents long transportation. The presence of feldspar in the lithic arenite suggests the rocks were deposited at high relief or cold temperatures. Primary porosity in sandstone was reduced by calcite cements around the grain, while secondary porosity was developed by fracturing of quartz and feldspar. Tectonic uplift in the study area was demonstrated by fractured quartz and mica in thin sections. Field observations of various sedimentary structures were observed such as load casts, ripple marks, and mud cracks, etc. The presence of conglomerates and load casts in the study area indicates that the Kamlial sandstone was deposited by fluvial and shallow marine environment. Furthermore, the ripple marks indicate that the tidal flat environment controlled the deposition of the sediments.

9.
Appl Spectrosc ; 78(2): 159-174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37960870

RESUMEN

Much research has focused on attempting to understand the drivers of bone diagenesis. However, this sensitive process is easily influenced by various factors, particularly the condition of the remains (i.e., whether they have been subjected to trauma). Previous research demonstrates that trauma can influence soft tissue decomposition, yet to date, no studies have looked at how bone fractures could affect bone diagenesis. To address this gap, two short timescale studies were conducted to investigate the influence of bone fractures on the physicochemical composition of disarticulated, partially fleshed animal remains. Disarticulated porcine bones were either fractured using blunt force or sharp force whilst fresh (producing perimortem damage), at 60 days producing postmortem damage (postmortem interval (PMI)), or left intact and left outside for up to 180 days post-fracture/240 days PMI. Retrieved bone sections were then analyzed for physicochemical differences using non-destructive methods, i.e., scanning electron microscopy energy dispersive spectroscopy and Fourier transform infrared spectroscopy with attenuated total reflectance. It was hypothesized that differences would be found in the physicochemical composition between the bones with fractures and those without after undergoing diagenetic change. The bone fractures significantly affected the elemental composition of bone over time, but structural composition initially remained stable. It was also possible to distinguish between perimortem and postmortem fractures using these two analytical techniques due to physicochemical differences. This research shows bone fractures can significantly alter the physicochemical composition of the bone during the postmortem period and have the potential to facilitate more accurate PMI estimations in forensic contexts.


Asunto(s)
Fracturas Óseas , Cambios Post Mortem , Porcinos , Animales , Huesos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
10.
Int J Legal Med ; 138(1): 151-164, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36820918

RESUMEN

The isotopic signatures of human tissues can provide valuable information on geographic origin for medicolegal investigations involving unidentified persons. It is important to understand the impact of diagenetic processes on isotopic signatures, as alterations could result in incorrect estimation of geographic origin. This study examines alterations in isotope signatures of different tissues of five human body donors studied throughout decomposition at the Forensic Anthropology Research Facility (FARF), San Marcos, TX. Two body donors were buried, two were placed in open pits, and one was first allowed to naturally mummify and then buried. Remains were recovered after a period of 7-34 months. The preplacement and post-recovery Sr-Pb isotope data of scalp hair, bone (iliac and tibia), and tooth enamel and dentine were compared. The hair samples record significant shifts in Sr-Pb isotope compositions, with hair keratin Pb isotope composition shifting towards the Pb signature of local soil samples. Hair keratin Sr isotope compositions were altered by the burial environment and possibly also by the lab sample cleaning method. The spongy iliac bone samples show inconsistencies in the recoverability of the preplacement Sr-Pb isotope signatures. The post-placement signatures of the buried donors show slight elevation over preplacement signatures. The post-placement signatures of donors placed in open pits are significantly elevated. The tibia and dental samples record the most consistent isotopic data with the least alteration. These more densely mineralised elements show good recoverability of the preplacement isotope signatures in burials and open pits and are thus deemed better targets for forensic investigative purposes.


Asunto(s)
Queratinas Específicas del Pelo , Plomo , Humanos , Isótopos , Cabello , Entierro
11.
Environ Sci Pollut Res Int ; 30(57): 120735-120748, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37943432

RESUMEN

The study on the origin of quartz and silica in Xuanwei Formation coal in Northwest Yunnan, China, is helpful to understand the relationship between quartz and silica and the high incidence of lung cancer from the root. To address these questions, the mineralogy and microscopic studies of silica in Xuanwei Formation coal were performed. The following results were obtained: (1) silica in the late Permian Xuanwei Formation coal seams originated from detrital input, early diagenesis, and late diagenesis. (2) A more significant contribution comes from early diagenesis, which contains abundant authigenic quartz and amorphous silica. (3) Quartz and silica from inorganic silicon are more symbiotic with kaolinite and from biogenic silicon with chamosite. (4) Three silica polymorphs in coal samples have been identified: opal-A (amorphous silica), opal-CT/-C (cristobalite/tridymite), and α quartz. (5) Opal-A is ubiquitous, while opal-CT/-C and α quartz are rare. (5) Opal-A is an amorphous and nontoxic ordinary silica. (6) Since the toxicity of amorphous silica and its presence in coal is an emerging topic, it should be continuously monitored.


Asunto(s)
Cuarzo , Dióxido de Silicio , Dióxido de Silicio/análisis , Carbón Mineral/análisis , Silicio , China/epidemiología
12.
Sci Total Environ ; 903: 166278, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37582450

RESUMEN

Mineralogical investigations on fluvial sedimentary sequences could provide historical environmental information on the effects of human activities and natural events. This study aims to identify the mineralogical distribution mechanism and environmental significance of sediments of the Yellow River Basin based on topographic analysis, statistics, weathering and recycling indices. In total, 107 samples were collected from sedimentary sequences in the source area, and the upper, middle, and lower reaches and analyzed for grain size, major elements, and mineral composition. The results showed that the climate conditions were cold and arid, where weak hydrolysis under continental weathering and strong erosion accelerated physical weathering. Clay minerals in the upper reaches primarily originated from the Tibetan Plateau, whereas the middle and lower reaches received input of aeolian deposits from Northern China. Quartz and feldspar in the middle and lower reaches may derive from the source area and upper reaches. Meanwhile, calcite and dolomite formed through diagenesis, with loess input from the Chinese Loess Plateau. Regarding heavy minerals, the dominant determinative factors of pyrite were post-depositional diagenesis and leaching. Hematite and amphibole primarily formed through magnetite conversion and contribution from regional sources, respectively. Moreover, the mineral distribution mechanism significantly affected the mobility and distribution of geochemical elements through diagenesis and alteration. The findings are instrumental in reconstructing the environmental evolution of large-scale watersheds across multiple climatic zones.

13.
Sci Total Environ ; 900: 166404, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37597545

RESUMEN

Pollutions of trace metals (TMs) in reservoirs are blooming due to TMs were trapped efficiently in reservoir sediments by dams. Despite the mobilization of TMs in sediments have been well-documented, the patterns of biogeochemical processes occurred in sediments remain poorly understanding. Herein, a deep reservoir was selected to investigate the patterns of TMs biogeochemical processes in sediments by using high-resolution ZrO-Chelex-AgI diffusive gradient in thin films technique (HR-ZCA DGT) and the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). 2-dimension high-resolution (2D-HR) images showed significant differential spatial enrichment of TMs (V, Mn, Fe, Co, Zn and Sb) in sediments, indicating strong heterogeneity in sediments. Correlations of TMs within microniches (diameter < 1 mm) in horizontal were usually different even contrast with that in vertical profile, suggesting distinct biogeochemical process patterns occurred in vertical vs. in horizontal. Further analyses from 2D-HR images showed the distributions of TMs in microniches reflected their mobilization that was driven by microenvironmental conditions. In contrast, distributions in sediment vertical profile recorded the diagenesis in different deposition depth. The diagenesis in sediment vertical is continuously accumulated by the discrete, microniches mobilization of TMs in horizontal. Collectively, our findings evidenced that 2D-HR data is an update complement to 1-dimension data for better interpret the biogeochemical process patterns of TMs in sediments, that have implication for water management to metals pollution in reservoir ecosystems.

14.
Heliyon ; 9(7): e17617, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37415948

RESUMEN

The Ebolowa Municipal Lake (EML) (South Cameroon) in order to identify the early diagenesis processes taking place in the lake and the factors influencing them. To this end, 21 samples were collected. In situ, hydrogen potential, redox potential, conductivity, dissolved oxygen content, and turbidity were measured. In the laboratory, the samples were subjected to mineralogical analysis by X-ray diffraction, geochemical analysis by X-ray fluorescence and ICP-MS, and statistical analysis. The coefficient of variation (Qi) was calculated from the geochemical data. In the water column, OD > 2 mg/L, pH > 7 and Eh < 0 mV. In sediments: pH < 7, Eh values are lower. The contents of 2.08 ≤ TOC ≤ 12.65%. The mineralogical procession consists of quartz, kaolinite, gibbsite, goethite, and siderite. The latter is only present in the EML. The sediments are dominated by SiO2 (60.44-89.47%), Al2O3 (6.55-18.17%), and Fe2O3 (1.15-6.21%). The Qi values range from 0.73 to 2.31. The Mn/Fe ratio values are below 0.40. Qi > 1 for Al, Fe, Mn, Mg, K, Na, P, Ni, Co, Zn, Pb, Cd, Cu, Ba, and V, and Qi < 1 for Si; Qi = 1 for Ca. The hierarchical cluster analysis shows two groups: the first one includes the samples from the central and western parts, while the second one includes those from the eastern and southern parts of the lake. The water column is subject to oxic conditions, while the sediments are anoxic. The rapid consumption of oxygen is due to organic mineralization, which is the main diagenesis observed in the lake. This phenomenon is more accentuated in the western part of the lake.

15.
Heliyon ; 9(6): e17208, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37360114

RESUMEN

Burial mounds represent a challenge for microbiologists. Could ancient buried soils preserve microbiomes as they do archaeological artifacts? To investigate this question, we studied the soil microbiome under a burial mound dating from 2500 years ago in Western Kazakhstan. Two soil profile cuts were established: one under the burial mound and another adjacent to the mound surface steppe soil. Both soils represented the same dark chestnut soil type and had the same horizontal stratification (A, B, C horizons) with slight alterations. DNA samples isolated from all horizons were studied with molecular techniques including qPCR and high throughput sequencing of amplicon libraries of the 16S rRNA gene fragment. The taxonomic structure of the microbiome of the buried horizons demonstrated a deep divergence from ones of the surface, comparable to the variation between different soil types (representatives of the soil types were included in the survey). The cause of this divergence could be attributed to diagenetic processes characterized by the reduction of organic matter content and changes in its structure. Corresponding trends in the microbiome structure are obvious from the beta-diversity pattern: the A and B horizons of the buried soils form one cluster with the C horizons of both buried and surface soil. This trend could generally be designated as 'mineralization'. Statistically significant changes between the buried and surface soils microbiomes were detected in the number of phylogenetic clusters, the biology of which is in the line of diagenesis. The trend of 'mineralization' was also supported by PICRUSt2 functional prediction, demonstrating a higher occurrence of the processes of degradation in the buried microbiome. Our results show a profound shift in the buried microbiome relatively the "surface" microbiome, indicating the deep difference between the original and buried microbiomes.

16.
Biology (Basel) ; 12(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37237455

RESUMEN

This article presents geochemical, mineralogical and microbiological characteristics of five samples of modern bottom sediments in the littoral zone of the high-mountain salty lake Issyk-Kul. The 16S rRNA gene sequencing method shows that the microbial community consists of organic carbon degraders (representatives of phyla: Proteobacteria, Chloroflexi, Bacteroidota and Verrucomicrobiota and families Anaerolineaceae and Hungateiclostridiaceae), photosynthetic microorganisms (representatives of Chloroflexi, phototrophic Acidobacteria, purple sulphur bacteria Chromatiaceae and cyanobacteria) and bacteria of the reducing branches of the sulphur biogeochemical cycle (representatives of Desulfobacterota, Desulfosarcinaceae and Desulfocapsaceae). The participation of microorganisms in processes in the formation of a number of authigenic minerals (calcite, framboidal pyrite, barite and amorphous Si) is established. The high diversity of microbial communities indicates the presence of labile organic components involved in modern biogeochemical processes in sediments. The active destruction of organic matter begins at the water-sediment interface.

17.
Biology (Basel) ; 12(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36979070

RESUMEN

Human skeletons associated with early gold mining in Johannesburg, South Africa are investigated. An unmarked cemetery was buried beneath a mine dump which resulted in macroscopically stained and poorly preserved bones. Histological assessments were conducted to understand the postmortem treatment of the remains, determine the extent of bone degradation, and understand how this environment affected the bone's microstructure. Various diagenetic alterations and the general histological index were assessed using normal and polarized light microscopy of thin anterior midshaft femur sections (n = 50). Degradation was identified in the periosteal and endosteal regions, while the intra-cortical region remained well-preserved. Bacterial bioerosion, microcracks, infiltrations, inclusions, and staining were found throughout the sample. Numerous non-Wedl micro-foci of destruction were observed, filled with exogenous material. The degradation suggested that the remains were buried in neutral soil that was subsequently covered by acidic mine dumps which resulted in a corrosive environment. Although the skeletons were poorly preserved, their histological integrity was more promising, especially the intra-cortical area. This is important for future investigations of archaeological bone, as this area can lead to more accurate descriptions of skeletal assemblages. Targeted sampling of this region could produce promising estimates of age, descriptions of pathology, and biomolecular results, which require further study.

18.
Biology (Basel) ; 12(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979095

RESUMEN

It is well understood that intrinsic factors of bone contribute to bone diagenesis, including bone porosity, crystallinity, and the ratio of organic to mineral components. However, histological analyses have largely been limited to adult bones, although with some exceptions. Considering that many of these properties are different between juvenile and adult bone, the purpose of this study is to investigate if these differences may result in increased degradation observed histologically in fetal and juvenile bone. Thirty-two fetal (n = 16) and juvenile (n = 16) Sus scrofa domesticus femora subject to different depositions over a period of two years were sectioned for histological observation. Degradation was scored using an adapted tunneling index. Results showed degradation related to microbial activity in both fetal and juvenile remains across depositions as early as three months. Buried juvenile remains consistently showed the greatest degradation over time, while the blanket fetal remains showed more minimal degradation. This is likely related to the buried remains' greater contact with surrounding soil and groundwater during deposition. Further, most of the degradation was seen in the subendosteal region, followed by the subperiosteal region, which may suggest the initial microbial attack is from endogenous sources.

19.
Astrobiology ; 23(5): 563-604, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880883

RESUMEN

Lipid molecules are organic compounds, insoluble in water, and based on carbon-carbon chains that form an integral part of biological cell membranes. As such, lipids are ubiquitous in life on Earth, which is why they are considered useful biomarkers for life detection in terrestrial environments. These molecules display effective membrane-forming properties even under geochemically hostile conditions that challenge most of microbial life, which grants lipids a universal biomarker character suitable for life detection beyond Earth, where a putative biological membrane would also be required. What discriminates lipids from nucleic acids or proteins is their capacity to retain diagnostic information about their biological source in their recalcitrant hydrocarbon skeletons for thousands of millions of years, which is indispensable in the field of astrobiology given the time span that the geological ages of planetary bodies encompass. This work gathers studies that have employed lipid biomarker approaches for paleoenvironmental surveys and life detection purposes in terrestrial environments with extreme conditions: hydrothermal, hyperarid, hypersaline, and highly acidic, among others; all of which are analogous to current or past conditions on Mars. Although some of the compounds discussed in this review may be abiotically synthesized, we focus on those with a biological origin, namely lipid biomarkers. Therefore, along with appropriate complementary techniques such as bulk and compound-specific stable carbon isotope analysis, this work recapitulates and reevaluates the potential of lipid biomarkers as an additional, powerful tool to interrogate whether there is life on Mars, or if there ever was.


Asunto(s)
Exobiología , Marte , Exobiología/métodos , Isótopos de Carbono/análisis , Carbono , Ambientes Extremos , Lípidos/análisis , Biomarcadores/análisis , Medio Ambiente Extraterrestre
20.
Astrobiology ; 23(5): 477-495, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944138

RESUMEN

Accurate interpretation of the martian sedimentary rock record-and by extension that planet's paleoenvironmental history and potential habitability-relies heavily on rover-based acquisition of textural and compositional data and researchers to properly interpret those data. However, the degree to which this type of remotely sensed information can be unambiguously resolved and accurately linked to geological processes in ancient sedimentary systems warrants further study. In this study, we characterize Mars-relevant siliciclastic-evaporite samples by traditional laboratory-based geological methods (thin section petrography, X-ray diffraction [XRD], backscattered electron imaging, microprobe chemical analyses) and remote sensing methods relevant to martian rover payloads (visible-near-mid infrared reflectance spectroscopy, X-ray fluorescence mapping, XRD). We assess each method's ability to resolve primary and secondary sedimentologic features necessary for the accurate interpretation of paleoenvironmental processes. While the most dominant textures and associated compositions (i.e., bedded gypsum evaporite) of the sample suite are readily identified by a combination of remote sensing techniques, equally important, although more subtle, components (i.e., interbedded windblown silt, meniscus cements) are not resolved unambiguously in bulk samples. However, rover-based techniques capable of coordinating spatially resolved compositional measurements with textural imaging reveal important features not readily detected using traditional assessments (i.e., subtle clay-organic associations, microscale diagenetic nodules). Our findings demonstrate the improved generational capacity of rovers to explore ancient sedimentary environments on Mars while also highlighting the complexities in extracting comprehensive paleoenvironmental information when limited to currently available rover-based techniques. Complete and accurate interpretation of ancient martian sedimentary environments, and by extension the habitability of those environments, likely requires sample return or in situ human exploration. Plain Language Summary Only when correctly translated can the ancient martian sedimentary rock record reveal the environmental evolution of the planet's surface through time. In this case study, we characterize Mars-relevant sedimentary rocks and evaluate the degree to which a comprehensive geological picture can be resolved unambiguously when limited to microscale remote sensing methods relevant to rovers on Mars. While the most dominant textural features and associated compositions of the sample suite are readily identified by a combination of remote sensing techniques, equally important but more subtle components are not resolved unambiguously in bulk samples. However, rover-based techniques capable of coordinating spatially resolved compositional measurements with textural imaging, such as Perseverance Rover's Planetary Instrument for X-Ray Lithochemistry instrument, reveal important features not readily detected by more traditional methods. We demonstrate that rovers have, generationally, improved in their capacity to resolve a true geological picture in ancient sedimentary environments, likely owing to an improved ability to coordinate spatially resolved compositional measurements with textural imaging at the microscale. However, our work also highlights the complexities involved in extracting subtle environmental information when limited to currently available rover-based techniques and suggests that comprehensive interpretation of ancient martian sedimentary systems likely requires sample return or in situ human exploration. Key Points Mars-relevant samples are characterized using both traditional laboratory and microscale rover-based remote sensing techniques to assess each method's ability to recognize features necessary for accurate paleoenvironmental process interpretation. While some key paleoenvironmental processes can reasonably be inferred via remote sensing methods, others cannot be resolved unambiguously. Perseverance Rover's Planetary Instrument for X-Ray Lithochemistry instrument reveals diagenetic features that would otherwise remain unseen by traditional thin section petrography.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Humanos , Medio Ambiente Extraterrestre/química , Exobiología/métodos , Tecnología de Sensores Remotos , Sedimentos Geológicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA