Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 6: 1402630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238878

RESUMEN

Neurotoxicants are substances that can lead to adverse structural or functional effects on the nervous system. These can be chemical, biological, or physical agents that can cross the blood brain barrier to damage neurons or interfere with complex interactions between the nervous system and other organs. With concerns regarding social policy, public health, and medicine, there is a need to ensure rigorous testing for neurotoxicity. While the most common neurotoxicity tests involve using animal models, a shift towards stem cell-based platforms can potentially provide a more biologically accurate alternative in both clinical and pharmaceutical research. With this in mind, the objective of this article is to review both current technologies and recent advancements in evaluating neurotoxicants using stem cell-based approaches, with an emphasis on developmental neurotoxicants (DNTs) as these have the most potential to lead to irreversible critical damage on brain function. In the next section, attempts to develop novel predictive model approaches for the study of both neural cell fate and developmental neurotoxicity are discussed. Finally, this article concludes with a discussion of the future use of in silico methods within developmental neurotoxicity testing, and the role of regulatory bodies in promoting advancements within the space.

2.
Front Toxicol ; 6: 1397477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165249

RESUMEN

Glyphosate-based herbicides (GBH) are a widely used group of pesticides that have glyphosate (GLY) as main active compound and are used to control a wide range of weeds. Experimental and epidemiological studies point to neurotoxicity and endocrine disruption as main toxic effects. The aim of this study was to investigate the effects of developmental exposure to GLY and GBH on locomotor behavior, and the possible contribution of GR-mediated signaling. We used zebrafish (Danio rerio) larvae in a continuous exposure regimen to GLY or GBH in the rearing medium. Alongside TL wildtype, we used a mutant line carrying a mutation in the GR which prevents the GR from binding to DNA (grs357), as well as a transgenic strain expressing a variant of enhanced green fluorescent protein (d4eGFP) controlled by a promoter carrying multiple GR response elements (SR4G). We found that acute exposure to GBH, but not GLY, activates GR-mediated signaling. Using a continuous developmental exposure regime, we show that wildtype larvae exposed to GBH display decreased spontaneous activity and attenuated response to environmental stimuli, a pattern of alteration similar to the one observed in grs357 mutant larvae. In addition, developmental exposure to GBH has virtually no effects on the behavior of grs357 mutant larvae. Taken together, our data indicate that developmental exposure to GBH has more pronounced effects than GLY on behavior at 5 dpf, and that interference with GR-mediated signaling may have a relevant contribution.

3.
Arch Toxicol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162819

RESUMEN

Developmental exposure to carbamates, organophosphates, and pyrethroids has been associated with impaired neurodevelopmental outcomes. Sex-specific differences following chronic insecticide exposure are rather common in vivo. Therefore, we assessed the chronic effects of in vitro exposure to different carbamates (carbaryl, methomyl and aldicarb), organophosphates [chlorpyrifos (CPF), chlorpyrifos-oxon (CPO), and 3,5,6,trichloropyridinol (TCP)], and pyrethroids [permethrin, alpha-cypermethrin and 3-phenoxy benzoic acid (3-PBA)] on neuronal network development in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure for 1 week to carbaryl inhibited neurodevelopment in male cultures, while a hyperexcitation was observed in female cultures. Methomyl and aldicarb evoked a hyperexcitation after 2 weeks of exposure, which was more pronounced in female cultures. In contrast to acute MEA results, exposure to ≥ 10 µM CPF caused hyperexcitation in both sexes after 10 days. Interestingly, exposure to 10 µM CPO induced a clear hyperexcitation after 10 days of exposure in male but not female cultures. Exposure to 100 µM CPO strongly inhibited neuronal development. Exposure to the type I pyrethroid permethrin resulted in a hyperexcitation at 10 µM and a decrease in neuronal development at 100 µM. In comparison, exposure to ≥ 10 µM of the type II pyrethroid alpha-cypermethrin decreased neuronal development. In female but not in male cultures, exposure to 1 and 10 µM permethrin changed (network) burst patterns, with female cultures having shorter (network) bursts with fewer spikes per (network) burst. Together, these results show that MEA recordings are suitable for measuring sex-specific developmental neurotoxicity in vitro. Additionally, pyrethroid exposure induced effects on neuronal network development at human-relevant concentrations. Finally, chronic exposure has different effects on neuronal functioning compared to acute exposure, highlighting the value of both exposure paradigms.

4.
Front Toxicol ; 6: 1359507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742231

RESUMEN

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

5.
Toxicol Sci ; 192(1): 59-70, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36637193

RESUMEN

Developmental neurotoxicity (DNT) is a potential hazard of chemicals. Recently, an in vitro testing battery (DNT IVB) was established to complement existing rodent in vivo approaches. Deltamethrin (DLT), a pyrethroid with a well-characterized neurotoxic mode of action, has been selected as a reference chemical to evaluate the performance of the DNT IVB. The present study provides context for evaluating the relevance of these DNT IVB results for the human health risk assessment of DLT by estimating potential human fetal brain concentrations after maternal exposure to DLT. We developed a physiologically based kinetic (PBK) model for rats which was then translated to humans considering realistic in vivo exposure conditions (acceptable daily intake [ADI] for DLT). To address existing uncertainties, we designed case studies considering the most relevant drivers of DLT uptake and distribution. Calculated human fetal brain concentrations were then compared with the lowest benchmark concentration achieved in the DNT IVB. The developed rat PBK model was validated on in vivo rat toxicokinetic data of DLT over a broad range of doses. The uncertainty based case study evaluation confirmed that repeated exposure to DLT at an ADI level would likely result in human fetal brain concentrations far below the in vitro benchmark. The presented results indicate that DLT concentrations in the human fetal brain are highly unlikely to reach concentrations associated with in vitro findings under realistic exposure conditions. Therefore, the new in vitro DNT results are considered to have no impact on the current risk assessment approach.


Asunto(s)
Síndromes de Neurotoxicidad , Piretrinas , Femenino , Humanos , Ratas , Animales , Piretrinas/toxicidad , Síndromes de Neurotoxicidad/etiología , Nitrilos/toxicidad , Medición de Riesgo
6.
Crit Rev Toxicol ; 52(7): 546-617, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36519295

RESUMEN

This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.


Asunto(s)
Enfermedades del Sistema Endocrino , Glándula Tiroides , Embarazo , Femenino , Ratas , Animales , Triyodotironina/metabolismo , Triyodotironina/farmacología , Tiroxina/metabolismo , Tiroxina/farmacología , Lactancia , Reflejo de Sobresalto , Hormonas Tiroideas
7.
Food Chem Toxicol ; 170: 113506, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36370916

RESUMEN

Following a multi-disciplinary approach integrating information from several experimental models we have collected new evidence supporting, expanding and redesigning the AOP "Disrupted laminin/int-ß1 interaction leading to decreased cognitive function". Investigations in vitro in rabbit and rat neurospheres and in vivo in mice exposed to EGCG (epigallocatechin-gallate) during neurodevelopment are combined with in vitro evaluations in neural progenitor cells overexpressing int-ß1 and literature information from int-ß1 deficiency models. We have discovered for the first time that neural progenitor cells from intrauterine growth restricted (IUGR) animals overexpress int-ß1 at gene and protein level and due to this change in prenatal brain programming they respond differently than control neurospheres to the exposure of EGCG, a compound triggering neural progenitor cell migration alterations. We have also identified that EGCG developmental exposure has deleterious effects on neuronal branching and arborization in vitro and in vivo. Our results warn that a thorough developmental neurotoxicity characterization of this and other catechin-based food supplements is needed before recommending their consumption during pregnancy.


Asunto(s)
Rutas de Resultados Adversos , Catequina , Células-Madre Neurales , Humanos , Embarazo , Femenino , Ratas , Animales , Ratones , Conejos , Catequina/farmacología , Neurogénesis , Retardo del Crecimiento Fetal , Encéfalo
8.
ACS Chem Neurosci ; 13(13): 1877-1890, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758696

RESUMEN

Zebrafish represent an economical alternative to rodents for developmental neurotoxicity (DNT) testing. Mechanistic understanding is the key to successfully translating zebrafish findings to humans. In the present study, we used a well-known dopaminergic (DA) neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a model chemical to uncover the molecular pathways for observed DNT effects. To enhance the specificity of potential molecular targets, we restricted our exposure to a concentration that is nonteratogenic yet exhibits high DNT effects and an exposure window sensitive to MPTP. Our DNT assessment based on a battery of motor and social behavioral tests revealed an effective concentration of 1 µM and a sensitive window of 48-96 h postfertilization (hpf) for MPTP-induced hypoactivity. It is worth noting that this hypoactivity persisted into later larval development until 28 dpf. We observed increased cell apoptosis, oxidative stress, and decreased ATP levels in larvae immediately after exposure at 96 hpf. Significant reductions of DA neurons were found in the retina at 72, 96, and 120 hpf. No visible deformity was found in motoneurons at 72, 96, and 120 hpf. Transcriptome analysis uncovered a novel pathway manifested by significant upregulation of genes enriched with erythropoiesis. Sensitive window exposure of MPTP and other DA neurotoxins rotenone and paraquat exhibited a concentration-dependent effect on transcriptional changes of embryonic hemoglobins and anemia. Given that anemia is a significant risk factor for Parkinson's disease and MPTP is known to cause parkinsonism in humans, we concluded that anemia resulting from dysregulation of primitive erythropoiesis during embryonic development might serve as a common mechanism underlying DA neurotoxin-induced DNT effects between zebrafish and humans.


Asunto(s)
Anemia , Intoxicación por MPTP , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Dopamina/metabolismo , Intoxicación por MPTP/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Pez Cebra/metabolismo
9.
Neurotoxicology ; 91: 360-368, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35772574

RESUMEN

Zebrafish is an economical alternative model for developmental neurotoxicity (DNT) testing. DNT studies in zebrafish have been focused on acute effects; few studies explore enduring neurotoxicity in adults. More recently, gut microbiome has emerged as an important modulator between chemical exposure and neurotoxicity, rendering its necessity to be included in DNT testing. The present study used a well-known dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a model chemical to explore long-lasting neurotoxicity in adults after transient exposure during early development. We demonstrated that transient MPTP exposure at 1 µM during a sensitive developmental window of 48-96 h post-fertilization (hpf) altered gut microbiome and led to male-biased locomotion and behavioral deficits in adult fish. The locomotion deficit was manifested as hypoactivity observed in adult males under light conditions or specifically the reduction of fast swim bouts. The social behavioral deficits were characterized by the reduced number of times fish crossed the mirror zone in the mirror response assay and the reduced percent time fish spent at the area proximal to conspecific fish shoal in the social preference test. Gut microbiome analysis revealed that transient MPTP exposure during early development might render fish more susceptible to the colonization of the pathogenic Vibrio. In conclusion, our study revealed that transient MPTP exposure during early development could lead to long-lasting neurotoxicity in adult fish and cause altered gut microbiome composition in both larval and adult fish.


Asunto(s)
Microbioma Gastrointestinal , Síndromes de Neurotoxicidad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Dopamina/farmacología , Larva , Masculino , Pez Cebra
10.
Artículo en Inglés | MEDLINE | ID: mdl-34206423

RESUMEN

Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.


Asunto(s)
Síndromes de Neurotoxicidad , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Escala de Evaluación de la Conducta , Embrión no Mamífero , Humanos , Síndromes de Neurotoxicidad/etiología , Pez Cebra
11.
Crit Rev Toxicol ; 51(4): 328-358, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34074207

RESUMEN

The current understanding of thyroid-related adverse outcome pathways (AOPs) with adverse neurodevelopmental outcomes in mammals has been reviewed. This served to establish if standard rodent toxicity test methods and in vitro assays allow identifying thyroid-related modes-of-action potentially leading to adverse neurodevelopmental outcomes, and the human relevance of effects - in line with the European Commission's Endocrine Disruptor Criteria. The underlying hypothesis is that an understanding of the key events of relevant AOPs provides insight into differences in incidence, magnitude, or species sensitivity of adverse outcomes. The rodent studies include measurements of serum thyroid hormones, thyroid gland pathology and neurodevelopmental assessments, but do not directly inform on specific modes-of-action. Opportunities to address additional non-routine parameters reflecting critical events of AOPs in toxicological assessments are presented. These parameters appear relevant to support the identification of specific thyroid-related modes-of-action, provided that prevailing technical limitations are overcome. Current understanding of quantitative key event relationships is often weak, but would be needed to determine if the triggering of a molecular initiating event will ultimately result in an adverse outcome. Also, significant species differences in all processes related to thyroid hormone signalling are evident, but the biological implications thereof (including human relevance) are often unknown. In conclusion, careful consideration of the measurement (e.g. timing, method) and interpretation of additional non-routine parameters is warranted. These findings will be used in a subsequent paper to propose a testing strategy to identify if a substance may elicit maternal thyroid hormone imbalance and potentially also neurodevelopmental effects in the progeny.


Asunto(s)
Pruebas de Toxicidad/métodos , Rutas de Resultados Adversos , Animales , Disruptores Endocrinos , Humanos , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/crecimiento & desarrollo , Síndromes de Neurotoxicidad , Medición de Riesgo , Glándula Tiroides , Hormonas Tiroideas
12.
Handb Exp Pharmacol ; 265: 111-141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32594299

RESUMEN

Animal models have been greatly contributing to our understanding of physiology, mechanisms of diseases, and toxicity. Yet, their limitations due to, e.g., interspecies variation are reflected in the high number of drug attrition rates, especially in central nervous system (CNS) diseases. Therefore, human-based neural in vitro models for studying safety and efficacy of substances acting on the CNS are needed. Human iPSC-derived cells offer such a platform with the unique advantage of reproducing the "human context" in vitro by preserving the genetic and molecular phenotype of their donors. Guiding the differentiation of hiPSC into cells of the nervous system and combining them in a 2D or 3D format allows to obtain complex models suitable for investigating neurotoxicity or brain-related diseases with patient-derived cells. This chapter will give an overview over stem cell-based human 2D neuronal and mixed neuronal/astrocyte models, in vitro cultures of microglia, as well as CNS disease models and considers new developments in the field, more specifically the use of brain organoids and 3D bioprinted in vitro models for safety and efficacy evaluation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes de Neurotoxicidad , Animales , Diferenciación Celular , Sistema Nervioso Central , Humanos , Neuronas
13.
J Appl Toxicol ; 41(7): 1021-1037, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33150595

RESUMEN

We have previously found that maternal exposure to 6-propyl-2-thiouracil (PTU), valproic acid (VPA), or glycidol (GLY) has a sustained or late effect on hippocampal neurogenesis at the adult stage in rat offspring. Herein, we searched for genes with hypermethylated promoter region and downregulated transcript level to reveal irreversible markers of developmental neurotoxicity. The hippocampal dentate gyrus of male rat offspring exposed maternally to PTU, VPA, or GLY was subjected to Methyl-Seq and RNA-Seq analyses on postnatal day (PND) 21. Among the genes identified, 170 were selected for further validation analysis of gene expression on PND 21 and PND 77 by real-time reverse transcription-PCR. PTU and GLY downregulated many genes on PND 21, reflecting diverse effects on neurogenesis. Furthermore, genes showing sustained downregulation were found after PTU or VPA exposure, reflecting a sustained or late effect on neurogenesis by these compounds. In contrast, such genes were not observed with GLY, probably because of the reversible nature of the effects. Among the genes showing sustained downregulation, Creb, Arc, and Hes5 were concurrently downregulated by PTU, suggesting an association with neuronal mismigration, suppressed synaptic plasticity, and reduction in neural stem and progenitor cells. Epha7 and Pvalb were also concurrently downregulated by PTU, suggesting an association with the reduction in late-stage progenitor cells. VPA induced sustained downregulation of Vgf and Dpysl4, which may be related to the aberrations in synaptic plasticity. The genes showing sustained downregulation may be irreversible markers of developmental neurotoxicity.


Asunto(s)
Metilación de ADN , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Síndromes de Neurotoxicidad/genética , Animales , ADN , Metilación de ADN/genética , Giro Dentado/efectos de los fármacos , Compuestos Epoxi , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Exposición Materna , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Propanoles , Propiltiouracilo/farmacología , Ratas
14.
Toxicol Lett ; 312: 195-203, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31085223

RESUMEN

Developmental exposure to valproic acid (VPA), a model compound for experimental autism, has shown to primarily target GABAergic interneuron subpopulations in hippocampal neurogenesis of rat offspring. The VPA-exposed animals had revealed late effects on granule cell lineages, involving progenitor cell proliferation and synaptic plasticity. To investigate the possibility whether hippocampal neurogenesis in postpubertal rats in a protocol of 28-day repeated exposure is affected in relation with the property of a developmental neurotoxicant by developmental exposure, VPA was orally administered to 5-week-old male rats at 0, 200, 800 and 900 mg/kg body weight/day for 28 days. At 900 mg/kg, GFAP+ cells increased in number, but DCX+ cells decreased in number in the granule cell lineages. Moreover, CHRNB2+ cells and NeuN+ postmitotic neurons decreased in number in the hilus of the dentate gyrus. Transcript level examined at 900 mg/kg in the dentate gyrus was increased with Kit, but decreased with Dpsyl3, Btg2, Pvalb and Chrnb2. These results suggest that VPA increased type-1 stem cells in relation to the activation of SCF-KIT signaling and suppression of BTG2-mediated antiproliferative effect on stem cells. VPA also decreased type-3 progenitor cells and immature granule cells probably in relation with PVALB+ interneuron hypofunction and reduced CHRNB2+ interneuron subpopulation in the hilus, as well as with suppression of BTG2-mediated terminal differentiation of progenitor cells. Thus, the disruption pattern of VPA by postpubertal exposure was different from developmental exposure. However, disruption itself can be detected, suggesting availability of hippocampal neurogenesis in detecting developmental neurotoxicants in a 28-day toxicity study.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Hipocampo/citología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Apoptosis/efectos de los fármacos , Linaje de la Célula , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Doblecortina , Esquema de Medicación , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Ratas , Maduración Sexual
15.
Neurotoxicology ; 67: 102-111, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704525

RESUMEN

Chemical exposures have been implicated as environmental risk factors that interact with genetic susceptibilities to influence individual risk for complex neurodevelopmental disorders, including autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder and intellectual disabilities. Altered patterns of neuronal connectivity represent a convergent mechanism of pathogenesis for these and other neurodevelopmental disorders, and growing evidence suggests that chemicals can interfere with specific signaling pathways that regulate the development of neuronal connections. There is, therefore, a growing interest in developing screening platforms to identify chemicals that alter neuronal connectivity. Cell-cell, cell-matrix interactions and systemic influences are known to be important in defining neuronal connectivity in the developing brain, thus, a systems-based model offers significant advantages over cell-based models for screening chemicals for effects on neuronal connectivity. The embryonic zebrafish represents a vertebrate model amenable to higher throughput chemical screening that has proven useful in characterizing conserved mechanisms of neurodevelopment. Moreover, the zebrafish is readily amenable to gene editing to integrate genetic susceptibilities. Although use of the zebrafish model in toxicity testing has increased in recent years, the diverse tools available for imaging structural differences in the developing zebrafish brain have not been widely applied to studies of the influence of gene by environment interactions on neuronal connectivity in the developing zebrafish brain. Here, we discuss tools available for imaging of neuronal connectivity in the developing zebrafish, review what has been published in this regard, and suggest a path forward for applying this information to developmental neurotoxicity testing.


Asunto(s)
Modelos Animales de Enfermedad , Interneuronas/metabolismo , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/metabolismo , Síndromes de Neurotoxicidad/diagnóstico por imagen , Síndromes de Neurotoxicidad/metabolismo , Animales , Animales Modificados Genéticamente , Citotoxinas/toxicidad , Humanos , Interneuronas/efectos de los fármacos , Imagen Molecular/métodos , Red Nerviosa/efectos de los fármacos , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pez Cebra
16.
Neurotoxicology ; 60: 116-124, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28467894

RESUMEN

Exposure to environmental toxicants during vulnerable windows of brain development is suspected to raise the prevalence for neurological dysfunctions at later stages in life. Differentiation processes and changes in morphology, as well as a lack of physiological barriers, might be reasons that render a developing brain more susceptible to neurotoxicants than an adult. However, also the intrinsic capacity of cells to combat toxicant induced cellular stress might differ between the immature- and mature brain. In order to study whether this intrinsic protection capacity differs between immature and maturated brain cells we chose to study the maturation-dependent adverse effects of the known neurotoxicant Paraquat Dichloride (PQ) in 3D rat brain cell cultures. This in vitro system consists of the major brain cell types - neurons, astrocytes, oligodendrocytes and microglia - and over the time in vitro cultured cells undergo differentiation and maturation into a tissue-like organization. PQ was applied repeatedly over ten days in the sub-micromolar range, and effects were evaluated on neurons and glial cells. We observed that despite a higher PQ-uptake in mature cultures, PQ-induced adverse effects on glutamatergic-, GABAergic- and dopaminergic neurons, as assessed by gene expression and enzymatic activity, were more pronounced in immature cultures. This was associated with a stronger astrogliosis in immature- as compared to mature cultures, as well as perturbations of the glutathione-mediated defense against oxidative stress. Furthermore we observed evidence of microglial activation only in mature cultures, whereas immature cultures appeared to down-regulate markers for neuroprotective M2-microglial phenotype upon PQ-exposure. Taken together our results indicate that immature brain cell cultures have less intrinsic capacity to cope with cellular stress elicited by PQ as compared to mature cells. This may render immature brain cells more susceptible to the adverse effects of PQ.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/embriología , Herbicidas/toxicidad , Paraquat/toxicidad , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Encefalitis/inducido químicamente , Mediadores de Inflamación , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo , Ratas Sprague-Dawley
17.
Neurotox Res ; 31(1): 46-62, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27566479

RESUMEN

Valproic acid (VPA) is used to establish models of experimental autism. The present study investigated the developmental exposure effect of VPA on postnatal hippocampal neurogenesis in accordance with the exposure scheme of OECD Test Guideline 426 adopted for developmental neurotoxicity. Pregnant rats were administered drinking water containing 0, 667, or 2000 ppm VPA from gestational day 6 until day 21 post-delivery. In the subgranular zone (SGZ) and granule cell layer (GCL) of offspring, the number of granule cell lineage subpopulations remained unchanged upon weaning. However, in the hilus of the dentate gyrus, the number of reelin+ interneurons decreased at ≥667 ppm, and the number of PVALB+ or GAD67+ interneurons decreased at 2000 ppm. Conversely, Reln and Gad1 transcript levels increased at 2000 ppm, but Pvalb and Grin2d decreased, in the dentate gyrus. At the adult stage, PCNA+ proliferating SGZ cells, NeuN+ postmitotic SGZ/GCL neurons, and ARC+ or COX2+ GCL neurons increased at ≥667 ppm. In the dentate hilus, decreases in GAD67+ interneuron subpopulations and Grin2d transcript levels sustained at 2000 ppm. These results suggested that VPA primarily targets interneurons by developmental exposure, and this is followed by late effects on granule cell lineages, likely by influencing SGZ cell proliferation and synaptic plasticity. A reduced population of reelin+ or PVALB+ interneurons did not affect distribution of granule cell lineage subpopulations upon weaning. The late effect on neurogenesis, which resulted in increased GCL neurons, might be the result of a sustained decrease in GAD67+ interneurons expressing NR2D encoded by Grin2d.


Asunto(s)
Giro Dentado/efectos de los fármacos , Interneuronas/efectos de los fármacos , Exposición Materna , Neurogénesis/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Ácido Valproico/toxicidad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Movimiento Celular/efectos de los fármacos , Corteza Cerebelosa/efectos de los fármacos , Corteza Cerebelosa/crecimiento & desarrollo , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Giro Dentado/patología , Modelos Animales de Enfermedad , Agua Potable , Femenino , Interneuronas/metabolismo , Interneuronas/patología , Masculino , Neurogénesis/fisiología , Embarazo , Distribución Aleatoria , Ratas , Proteína Reelina , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología
18.
Mol Neurobiol ; 54(3): 1797-1807, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-26887381

RESUMEN

The profound significance of autophagy as a cell survival mechanism under conditions of metabolic stress is a well-proven fact. Nearly a decade-long research in this area has led scientists to unearth various roles played by autophagy other than just being an auto cell death mechanism. It is implicated as a vital cell survival pathway for clearance of all the aberrant cellular materials in case of cellular injury, metastasis, disease states, cellular stress, neurodegeneration and so on. In this review, we emphasise the critical role of autophagy in the environmental stressors-induced neurotoxicity and its therapeutic implications for the same. We also attempt to shed some light on the possible protective role of autophagy in developmental neurotoxicity (DNT) which is a rapidly growing health issue of the human population at large and hence a point of rising concern amongst researchers. The intimate association between DNT and neurodegenerative disorders strongly indicates towards adopting autophagy activation as a much-needed remedy for DNT.


Asunto(s)
Autofagia/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Animales , Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/patología
19.
Arch Toxicol ; 91(4): 2017-2028, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27722930

RESUMEN

Current developmental neurotoxicity (DNT) testing in animals faces major limitations, such as high cost and time demands as well as uncertainties in their methodology, evaluation and regulation. Therefore, the use of human-based 3D in vitro systems in combination with high-content image analysis (HCA) might contribute to DNT testing with lower costs, increased throughput and enhanced predictivity for human hazard identification. Human neural progenitor cells (hNPCs) grown as 3D neurospheres mimic basic processes of brain development including hNPC migration and differentiation and are therefore useful for DNT hazard identification. HCA of migrated neurospheres creates new challenges for automated evaluations because it encompasses variable cell densities, inconsistent z-layers and heterogeneous cell populations. We tackle those challenges with our Omnisphero software, which assesses multiple endpoints of the 'Neurosphere Assay.' For neuronal identification, Omnisphero reaches a true positive rate (TPR) of 83.8 % and a false discovery rate (FDR) of 11.4 %, thus being comparable to the interindividual difference among two researchers (TPR = 94.3, FDR = 11.0 %) and largely improving the results obtained by an existing HCA approach, whose TPR does not exceed 50 % at a FDR above 50 %. The high FDR of existing methods results in incorrect measurements of neuronal morphological features accompanied by an overestimation of compound effects. Omnisphero additionally includes novel algorithms to assess 'neurosphere-specific' endpoints like radial migration and neuronal density distribution within the migration area. Furthermore, a user-assisted parameter optimization procedure makes Omnisphero accessible to non-expert end users.


Asunto(s)
Células-Madre Neurales/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Organoides/efectos de los fármacos , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Humanos , Imagenología Tridimensional/métodos , Células-Madre Neurales/patología , Organoides/patología
20.
Toxicol Sci ; 149(2): 433-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26572663

RESUMEN

Exposure to 50-60 Hz extremely low-frequency electromagnetic fields (ELF-EMFs) has increased considerably over the last decades. Several epidemiological studies suggested that ELF-EMF exposure is associated with adverse health effects, including neurotoxicity. However, these studies are debated as results are often contradictory and the possible underlying mechanisms are unknown. Since the developing nervous system is particularly vulnerable to insults, we investigate effects of chronic, developmental ELF-EMF exposure in vitro. Primary rat cortical neurons received 7 days developmental exposure to 50 Hz block-pulsed ELF-EMF (0-1000 µT) to assess effects on cell viability (Alamar Blue/CFDA assay), calcium homeostasis (single cell fluorescence microscopy), neurite outgrowth (ß(III)-Tubulin immunofluorescent staining), and spontaneous neuronal activity (multi-electrode arrays). Our data demonstrate that cell viability is not affected by developmental ELF-EMF (0-1000 µT) exposure. Depolarization- and glutamate-evoked increases in intracellular calcium concentration ([Ca(2+)]i) are slightly increased at 1 µT, whereas both basal and stimulation-evoked [Ca(2+)]i show a modest inhibition at 1000 µT. Subsequent morphological analysis indicated that neurite length is unaffected up to 100 µT, but increased at 1000 µT. However, neuronal activity appeared largely unaltered following chronic ELF-EMF exposure up to 1000 µT. The effects of ELF-EMF exposure were small and largely restricted to the highest field strength (1000 µT), ie, 10 000 times above background exposure and well above current residential exposure limits. Our combined data therefore indicate that chronic ELF-EMF exposure has only limited (developmental) neurotoxic potential in vitro.


Asunto(s)
Corteza Cerebral/efectos de la radiación , Campos Electromagnéticos , Neuronas/efectos de la radiación , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Neuritas/efectos de la radiación , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA