Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Hazard Mater ; 480: 135886, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39298952

RESUMEN

Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.

2.
Ecotoxicol Environ Saf ; 284: 116917, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182280

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), poses a significant threat to food security, necessitating effective management strategies. While chemical control remains a primary approach, understanding the toxicity and detoxification mechanisms of different insecticides is crucial. In this study, we conducted leaf-dipping bioassays to assess the toxicity of quinalphos and beta-cypermethrin·emamectin benzoate (ß-cyp·EMB) on S. frugiperda larvae. Additionally, we assessed the response of alterations in CarE, GST, MFO, and AChE activities to sublethal concentrations of these insecticides over various treatment durations. Results indicated that ß-cyp·EMB exhibited higher toxicity than quinalphos in S. frugiperda. Interestingly, the highest activities of GST, CarE, MFO, and AChE were observed at 6 h exposure to LC10 and LC25 of ß-cyp·EMB, surpassing equivalent sublethal concentrations of quinalphos. Subsequently, GST and CarE activities exposure to ß-cyp·EMB steadily decreased, while MFO and AChE activities exposure to both insecticides was initially decreased then increased. Conversely, two sublethal concentrations of quinalphos notably enhanced GST activity across all exposure durations, with significantly higher than ß-cyp·EMB at 12-48 h. Similarly, CarE activity was also increased at various durations. Our research has exhibited significant alterations in enzyme activities exposure to both concentration and duration. Furthermore, Pearson correlation analysis showed significant correlations among these enzyme activities at different treatment durations. These findings contribute to a better understanding of detoxification mechanisms across different insecticides, providing valuable insights for the rational management of S. frugiperda populations.

3.
Sci Total Environ ; 950: 175324, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127202

RESUMEN

The excessive and frequent use of insecticides has led to serious problems with insecticide residues, impacting nontarget organisms such as the parasitoid Encarsia formosa. This study examined the growth, development, and enzyme activity of E. formosa exposed to spirotetramat at LC10, LC30, and LC50. The regression equation for the toxicity of spirotetramat toward E. formosa was Y = 5.25X-11.07. After exposure to spirotetramat, the survival rates of E. formosa sharply decreased, which occurred earlier than those in the control batch. Although the maximum daily parasitism quantity of E. formosa increased and the average parasitism number, enumerated from the 1st to the 5th day, was 53.97 after being exposed to spirotetramat at LC10, the life span of its F1 generation adults was only 8.47 days, which was significantly shorter than that in the control batch. After being exposed to spirotetramat at LC50, the average parasitism number of E. formosa was 63.30, and the developmental time of its F1 generation, enumerated from the 1st to the 5th day after exposure to spirotetramat, was significantly longer than that of the control batch. The activities of mixed function oxidase, acetylcholinesterase, carboxylesterase, and catalase increased significantly, and the rate of increase in enzyme activity was directly proportional to the increase in the concentration of spirotetramat. These results revealed that the parasitic ability of E. formosa decreased after exposure to spirotetramat at LC10, LC30, and LC50. This leads to a change in parasitoid control of pests, revealing the potential environmental threat of insecticide residues to nontarget organisms.


Asunto(s)
Compuestos Aza , Hemípteros , Insecticidas , Compuestos de Espiro , Avispas , Animales , Compuestos de Espiro/toxicidad , Hemípteros/efectos de los fármacos , Compuestos Aza/toxicidad , Insecticidas/toxicidad , Avispas/efectos de los fármacos , Avispas/fisiología , Control de Insectos
4.
Funct Integr Genomics ; 24(4): 129, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039331

RESUMEN

Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas , Spodoptera , Transcriptoma , Spodoptera/efectos de los fármacos , Spodoptera/genética , Animales , Endotoxinas/genética , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia a los Insecticidas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Zea mays/genética , Zea mays/parasitología , Perfilación de la Expresión Génica
5.
Chemosphere ; 362: 142887, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025308

RESUMEN

Pieris rapae (Lepidoptera: Pieridae) poses a significant threat to Brassicaceae crops, leading to substantial losses annually. Repeated insecticide applications are widely used to protect crops and increase the resistance of P. rapae. Exploring the biochemical and molecular basis of insecticide tolerance in P. rapae is crucial for achieving effective insect suppuration and implementing resistance control strategies. In our research, emamectin benzoate (EBZ) resistance was developed in P. rapae strain through selective pressure over 15 generations. Moreover, the biochemical mechanisms underlying resistance to EBZ and its potential cross-resistance to other insecticides were studied. Additionally, the expression levels of cytochrome P450 (CYP450) and glutathione-s-transferase (GST) genes in P. rapae were quantitatively assessed upon exposure to EBZ using real-time PCR. Our data exhibited that the LC50 value of susceptible strain (Sus) and EBZ resistance strain (EBZ-R) were 0.009 and 8.09 mg/L, with a resistance ratio (RR) reaching 898.8-fold. The EBZ-R stain displayed notably low cross-resistance to lambda-cyhalothrin, spinetoram, and cypermethrin. However, it demonstrated a moderate level of cross-resistance to deltamethrin. Conversely, no cross-resistance was noted to chlorantraniliprole and indoxacarb. Notably, enzyme inhibitors of detoxification enzymes revealed that piperonyl butoxide (PBO) and diethyl maleate (DEM) enhanced the EBZ toxicity to the resistant strain, indicating the potential involvement of CYP450 and GST in avermectin resistance. A remarkable enhancement in CYP450 and GST activity was observed in the EBZ-R stain. CYP450 and GST genes are upregulated in the EBZ-R stain compared to the Sus strain, which serves as a basis for comprehending the mechanism behind P. rapae resistance to EBZ. The molecular docking analysis demonstrated that EBZ has a high binding affinity with CYP6AE120 and PrGSTS1 with docking energy values of -20.19 and -22.57 kcal/mol, respectively. Our findings offer valuable insights into crafting efficient strategies to monitor and manage resistance in P. rapae populations in Egypt.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Glutatión Transferasa , Resistencia a los Insecticidas , Insecticidas , Ivermectina , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Ivermectina/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Piretrinas/toxicidad , Piretrinas/farmacología , Mariposas Diurnas/efectos de los fármacos , Mariposas Diurnas/genética , Nitrilos/toxicidad , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
6.
Environ Toxicol Pharmacol ; 110: 104516, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032582

RESUMEN

Partamona helleri is an important pollinator in the Neotropics. However, this bee faces an increased risk of pesticide exposure, potentially affecting both individual bees and entire colonies. Thus, this study aimed to evaluate the effects of the herbicide tebuthiuron on behavior, antioxidant activity, midgut morphology, and signaling pathways related to cell death, cell proliferation and differentiation in P. helleri workers. tebuthiuron significantly reduced locomotor activity and induced morphological changes in the midgut. The activity of the detoxification enzymes superoxide dismutase and glutathione S-transferase increased after exposure, indicating a detoxification mechanism. Furthermore, the herbicide led to alterations in the number of positive cells for signaling-pathway proteins in the midgut of bees, suggesting induction of apoptotic cell death and disruption of midgut epithelial regeneration. Therefore, tebuthiuron may negatively impact the behavior, antioxidant activity, morphology, and physiology of P. helleri workers, potentially posing a threat to the survival of this non-target organism.


Asunto(s)
Conducta Animal , Glutatión Transferasa , Herbicidas , Superóxido Dismutasa , Animales , Abejas/efectos de los fármacos , Abejas/fisiología , Herbicidas/toxicidad , Glutatión Transferasa/metabolismo , Conducta Animal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Compuestos de Fenilurea/toxicidad , Compuestos de Fenilurea/farmacología
7.
Pestic Biochem Physiol ; 203: 106009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084775

RESUMEN

Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas , Nitrilos , Piretrinas , Spodoptera , Animales , Piretrinas/farmacología , Piretrinas/toxicidad , Spodoptera/efectos de los fármacos , Spodoptera/genética , Nitrilos/toxicidad , Nitrilos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Insecticidas/farmacología , Insecticidas/toxicidad , Resistencia a los Insecticidas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Interferencia de ARN , Inactivación Metabólica , Larva/efectos de los fármacos , Larva/genética
8.
Insects ; 15(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921165

RESUMEN

Cyantraniliprole is a novel anthranilic diamide insecticide registered for controlling chewing and sucking insect pests. Here, the lethal and sublethal effects of this insecticide on two destructive lepidopteran pests, Spodoptera littoralis Boisduval and Agrotis ipsilon Hufnagel, were evaluated. Because the effects of novel insecticides on beneficial and non-target arthropods must be considered, the impact of cyantraniliprole on a generalist biological control agent, Chrysoperla carnea [Stephens 1836], were also examined. Overall, our study revealed that cyantraniliprole was more toxic to A. ipsilon than to S. littoralis. Moreover, the LC15 and LC50 of the insecticide significantly prolonged the duration of the larval and pupal stages and induced enzymatic detoxification activity in both species. Treatment of the second-instar larvae of C. carnea with the recommended concentration of cyantraniliprole (0.75 mg/L) doubled the mortality rates and resulted in a slight negative effect on the biology and detoxification enzymes of C. carnea. Our results indicate that both sublethal and lethal concentrations of cyantraniliprole can successfully suppress S. littoralis and A. ipsilon populations. They also suggest that C. carnea, as a generalist predator, is compatible with cyantraniliprole under the modelled realistic field conditions. In future investigations, insights into the effects of cyantraniliprole on S. littoralis, A. ipsilon, and C. carnea under field conditions will be required to appropriately validate our results.

9.
Chemosphere ; 358: 142240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705417

RESUMEN

The Aedes aegypti mosquito is a vector for various arboviruses, including dengue and yellow fever. Insecticides, such as pyrethroids and organophosphates, are widely used to manage and control these insects. However, mosquitoes have developed resistance to these chemicals. Therefore, this study aimed to investigate the effects of the commercial formulation of fipronil (Tuit® Florestal; 80% purity) on the survival, behavior, morphology, and proteins related to signaling pathways of the midgut in A. aegypti larvae under controlled laboratory conditions. Significant reductions in immature survival were observed in all concentrations of fipronil tested. Low insecticide concentration (0.5 ppb) led to decreased locomotor activity in the larvae and caused disorganization of the epithelial tissue in the midgut. Moreover, exposure to the insecticide decreased the activity of detoxifying enzymes such as catalase, superoxide dismutase, and glutathione-S-transferase. On the other hand, the insecticide increased protein oxidation and nitric oxide levels. The detection of LC3, caspase-3, and JNK proteins, related to autophagy and apoptosis, increased after exposure. However, there was a decrease in the positive cells for ERK 1/2. Furthermore, the treatment with fipronil decreased the number of positive cells for the proteins FMRF, Prospero, PH3, Wg, Armadillo, Notch, and Delta, which are related to cell proliferation and differentiation. These findings demonstrate that even at low concentrations, fipronil exerts larvicidal effects on A. aegypti by affecting behavior and enzymatic detoxification, inducing protein oxidation, free radical generation, midgut damage and cell death, and inhibiting cell proliferation and differentiation. Thus, this insecticide may represent a viable alternative for controlling the spread of this vector.


Asunto(s)
Aedes , Insecticidas , Larva , Pirazoles , Animales , Aedes/efectos de los fármacos , Aedes/crecimiento & desarrollo , Aedes/fisiología , Pirazoles/toxicidad , Insecticidas/toxicidad , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Sistema Digestivo/efectos de los fármacos
10.
Insects ; 15(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667395

RESUMEN

In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: oxamyl, acephate, bifenthrin, λ-cyhalothrin, imidacloprid, thiamethoxam, and sulfoxaflor. Stinks bugs were collected from soybeans in Leland, MS, USA during 2022 and 2023, as well as from wild host plants in Clarksdale, MS. There was no significant difference in the susceptibility of C. hilaris to seven insecticides between two years, whereas P. guildinii showed slightly increased susceptibility to neonicotinoids in 2023. Among all four stink bug species, susceptibility in 2022 was ranked as P. guildinii ≤ C. hilaris ≈ N. viridula, while in 2023, it was ranked as P. guildinii ≤ C. hilaris ≤ E. Servus. Additionally, populations of E. servus and P. guildinii collected from Clarksdale exhibited high tolerance to pyrethroids and neonicotinoids. Moreover, populations of E. servus and P. guildinii from SIMRU-2022 and Clarksdale-2023 showed elevated esterase and cytochrome P450 activity, respectively. These findings from spray bioassays and enzyme activity analyses provide a baseline for monitoring insecticide resistance in Pentatomidae and can guide insecticide resistance management strategies for Mississippi soybean.

11.
Insects ; 15(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38667425

RESUMEN

Epidemics of arboviruses in general, and dengue fever in particular, are an increasing threat in areas where Aedes (Ae.) aegypti is present. The effectiveness of chemical control of Ae. aegypti is jeopardized by the increasing frequency of insecticide resistance. The aim of this study was to determine the susceptibility status of Ae. aegypti to public health insecticides and assess the underlying mechanisms driving insecticide resistance. Ae. aegypti eggs were collected in two study sites in the vicinity of houses for two weeks using gravid Aedes traps (GATs). After rearing the mosquitoes to adulthood, female Ae. aegypti were exposed to diagnostic doses of permethrin, deltamethrin and bendiocarb, using Centers for Disease Control and Prevention (CDC) bottle bioassays. Unexposed, un-engorged female Ae. aegypti were tested individually for mixed-function oxidase (MFO), glutathione-S-transferase (GST) and α and ß esterase activities. Finally, allele-specific PCR (AS-PCR) was used to detect possible kdr mutations (F1534C, S989P, and V1016G) in the voltage-gated sodium channel gene in insecticide-exposed Ae. aegypti. Most traps were oviposition positive; 93.2% and 97% of traps contained Ae. aegypti eggs in the 10ème arrondissement of Cotonou and in Godomey-Togoudo, respectively. Insecticide bioassays detected resistance to permethrin and deltamethrin in both study sites and complete susceptibility to bendiocarb. By comparison to the insecticide-susceptible Rockefeller strain, field Ae. aegypti populations had significantly higher levels of GSTs and significantly lower levels of α and ß esterases; there was no significant difference between levels of MFOs. AS-PCR genotyping revealed the possible presence of 3 kdr mutations (F1534C, S989P, and V1016G) at high frequencies; 80.9% (228/282) of the Ae. aegypti tested had at least 1 mutation, while the simultaneous presence of all 3 kdr mutations was identified in 13 resistant individuals. Study findings demonstrated phenotypic pyrethroid resistance, the over-expression of key detoxification enzymes, and the possible presence of several kdr mutations in Ae. aegypti populations, emphasizing the urgent need to implement vector control strategies targeting arbovirus vector species in Benin.

12.
Pest Manag Sci ; 80(6): 2965-2975, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38298017

RESUMEN

BACKGROUND: Integrated Pest Management (IPM) seeks to combine multiple management strategies for optimal pest control. One method that is successfully employed in IPM is the use of beneficial organisms. However, in severe circumstances when pest insects exceed threshold limits, insecticides may still need to be implemented. Thus, understanding the effects of insecticides on biocontrol agents, such as parasitoid wasps, is paramount to ensure sustainable agroecosystems. Sublethal effects of the bioinsecticide spinosyn, a mixture of the bacterial Saccharopolyspora spinosa (Mertz and Yao) fermentation products spinosyn A and D, on eggs of Trichoplusia ni (Hübner), a cruciferous crop pest, and its egg parasitoid Trichogramma brassicae (Bezdenko) was investigated. RESULTS: The LC50 for spinosyn A and D (dissolved in ethanol) on T. ni eggs is 54 ng mL-1. Transcriptomics on caterpillars (1st and 3rd instars) that hatched from eggs treated with sublethal concentrations of spinosyn identified the upregulation of several genes encoding proteins that may be involved in insecticide resistance including detoxification enzymes, such as cytochrome P450s, glutathione S-transferases and esterases. Sublethal T. ni egg treatments did not affect parasitoid emergence, however, there was a marked increase in the size of T. brassicae hind tibia and wings that emerged from spinosyn-treated eggs. CONCLUSIONS: For the caterpillar, treatment of eggs with sublethal concentrations of spinosyn may induce insecticide resistance mechanisms. For the parasitoids, their increased size when reared in spinosyn-treated eggs suggests that the emerged wasps may have higher performance. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Insecticidas , Larva , Macrólidos , Mariposas Nocturnas , Óvulo , Avispas , Animales , Mariposas Nocturnas/parasitología , Mariposas Nocturnas/efectos de los fármacos , Avispas/efectos de los fármacos , Avispas/fisiología , Óvulo/efectos de los fármacos , Óvulo/parasitología , Insecticidas/farmacología , Macrólidos/farmacología , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Control Biológico de Vectores
13.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139205

RESUMEN

Alpha-pinene is one of the main defensive components in conifers. Monochamus alternatus (Coleoptera: Cerambycidae), a wood borer feeding on Pinaceae plants, relies on its detoxifying enzymes to resist the defensive terpenoids. Here, we assayed the peroxide level and GST activity of M. alternatus larvae treated with different concentrations of α-pinene. Meanwhile, a gst gene (MaGSTe3) was isolated and analyzed. We determined its expression level and verified its function. The results showed that α-pinene treatment led to membrane lipid peroxidation and thus increased the GST activity. Expression of MaGSTe3 was significantly upregulated in guts following exposure to α-pinene, which has a similar pattern with the malonaldehyde level. In vitro expression and disk diffusion assay showed that the MaGSTe3 protein had high antioxidant capacity. However, RNAi treatment of MaGSTe3 did not reduce the hydrogen peroxide and malonaldehyde levels, while GST activity was significantly reduced. These results suggested MaGSTe3 takes part in α-pinene adaptation, but it does not play a great role in the resistance of M. alternatus larvae to α-pinene.


Asunto(s)
Escarabajos , Glutatión Transferasa , Animales , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Escarabajos/genética , Escarabajos/metabolismo , Monoterpenos Bicíclicos , Larva/genética , Larva/metabolismo , Malondialdehído
14.
Pestic Biochem Physiol ; 196: 105634, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945265

RESUMEN

Chemical control of tick infestation on dairy farms in India strongly relies upon the use of synthetic pyrethroids (deltamethrin) and organophosphate (coumaphos) drugs. Therefore, the present manuscript aims to investigate the resistance status of Rhipicephalus microplus ticks against these acaricides. Fully engorged adult R. microplus ticks were randomly collected from 8 dairy farms in North India and evaluated for acaricide resistance by using the Larval Packet Test (LPT). Of these, ticks collected from one and three farms showed the emergence of Level I acaricide resistance against deltamethrin and coumaphos, respectively. Significant positive correlations were found in the enzymatic activity (α-esterase, ß-esterase, glutathione-S-transferase, and mono-oxygenase) of R. microplus tick resistant against coumaphos. Native electrophoretogram analysis showed six different types of esterase activity in R. microplus (EST-1b to EST-6b), and EST-5b activity was more predominantly expressed in resistant ticks. Further, inhibitor studies using various esterase inhibitors suggested that EST-5b is a putative acetylcholine-esterase (AchE), and increased expression of one of the AchE might be responsible for the emergence of acaricide resistance. Further, no mutations were detected in the carboxylesterase (G1120A) and domain II S4-5 linker region (C190A) of the sodium channel genes of resistant R. microplus ticks, indicating that increased expression of detoxification enzymes was the probable mechanism for the development of acaricide resistance in the resistant ticks.


Asunto(s)
Acaricidas , Piretrinas , Rhipicephalus , Animales , Rhipicephalus/genética , Acaricidas/farmacología , Cumafos , Organofosfatos/farmacología , Piretrinas/farmacología , Esterasas/genética , Esterasas/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo
15.
Pestic Biochem Physiol ; 195: 105536, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666608

RESUMEN

The efficacy of insecticides is usually influenced by temperature. Insecticides can be divided into "positive", "negative" and "non-effect" temperature coefficient insecticides (TCI). To assess the temperature-dependent effect of tetrachlorantraniliprole (TET) on Plutella xylostella Linnaeus and to elucidate the mechanism of temperature affects TET toxicity, we determined the toxicity of TET against P. xylostella from 15 °C to 35 °C by leaf dipping method. Moreover, we compared the transcriptome data of the third-instar larvae treated by TET, chlorfenapyr (CHL, non-effect TCI), and the control group at 15, 25, 35 °C, respectively. The results showed that the toxicity of TET against P. xylostella increased with increasing temperature from 15 °C to 35 °C. A total of 21 differential expressed genes (DEGs) of detoxification enzymes were screened by RNA-seq, in which 10 up-regulated genes (3 UGTs, 2 GSTs, 5 P450s) may involve the positive temperature effect of TET, and their expression patterns were consistent with qPCR results. Furthermore, the enzyme activities of GSTs and UGTs significantly increased after TET was treated at 15 °C. Especially, the temperature coefficient (TC) of TET was significantly reduced mixed with UGTs enzyme inhibitor 5-NI. Overall, TET showed higher insecticidal activity with increasing temperature, in which detoxifying enzymes associated with regulation of the positive temperature effect of TET on P. xylostella, such as UGTs, GSTs and P450s, are strongly involved. The transcriptome data provide in-depth information to understand the TET mechanism against diamondback moth. Most importantly, we identified detoxification enzymes that might be involved in regulating TET's positive temperature effect process, and contributed to efficient pest management.


Asunto(s)
Insecticidas , Lepidópteros , Animales , Insecticidas/toxicidad , Temperatura , Larva/genética , Hojas de la Planta
16.
Pestic Biochem Physiol ; 195: 105563, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666619

RESUMEN

Spodoptera frugiperda (fall armyworm, FAW) is an invasive polyphagous lepidopteran pest that has developed sophisticated resistance mechanisms involving detoxification enzymes to eliminate toxic compounds it encounters in its diet including insecticides. Although its inventory of detoxification enzymes is known, the mechanisms that enable an adapted response depending on the toxic compound remain largely unexplored. Sf9 cells were used to investigate the role of the transcription factors, Cap n' collar isoform C (CncC) and musculoaponeurotic fibrosarcoma (Maf) in the regulation of the detoxification response. We overexpressed CncC, Maf or both genes, and knocked out (KO) CncC or its repressor Kelch-like ECH associated protein 1 (Keap1). Joint overexpression of CncC and Maf is required to confer increased tolerance to indole 3-carbinol (I3C), a plant secondary metabolite, and to methoprene, an insecticide. Both molecules induce reactive oxygen species (ROS) pulses in the different cell lines. The use of an antioxidant reversed ROS pulses and restored the tolerance to I3C and methoprene. The activity of detoxification enzymes varied according to the cell line. Suppression of Keap1 significantly increased the activity of cytochrome P450s, carboxylesterases and glutathione S-transferases. RNAseq experiments showed that CncC mainly regulates the expression of detoxification genes but is also at the crossroads of several signaling pathways (reproduction and immunity) maintaining homeostasis. We present new data in Sf9 cell lines suggesting that the CncC:Maf pathway plays a central role in FAW response to natural and synthetic xenobiotics. This knowledge helps to better understand detoxification gene expression and may help to design next-generation pest insect control measures.


Asunto(s)
Metopreno , Xenobióticos , Animales , Células Sf9 , Spodoptera/genética , Proteína 1 Asociada A ECH Tipo Kelch , Especies Reactivas de Oxígeno , Xenobióticos/farmacología , Factor 2 Relacionado con NF-E2 , Transducción de Señal
17.
Plants (Basel) ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765352

RESUMEN

Seaweeds, also known as marine macroalgae, are renewable biological resources that are found worldwide and possess a wide variety of secondary metabolites, including tannins. Drifted brown seaweed (DBSW) is particularly rich in tannins and is regarded as biological trash. The cotton leaf hopper Amrasca devastans (Distant) has caused both quantitative and qualitative losses in cotton production. Drifted brown seaweeds (DBSWs) were used in this study to extract, qualitatively profile, and quantify the levels of total tannins, condensed tannins, hydrolyzable tannins, and phlorotannins in the seaweeds; test their insecticidal activity; and determine the mechanism of action. The largest amount of tannin extract was found in Sargassum wightii Greville (20.62%) using the Soxhlet method (SM). Significantly higher amounts of hydrolyzable tannins (p = 0.005), soluble phlorotannins (p = 0.005), total tannins in the SM (p = 0.003), and total tannins in the cold percolation method (p = 0.005) were recorded in S. wightii. However, high levels of condensed tannins (CTAs) were observed in Turbinaria ornata (Turner) J. Agardh (p = 0.004). A. devastans nymphs and adults were examined for oral toxicity (OT) and contact toxicity (CT) against DBSW tannin crude extract and column chromatographic fractions 1 (Rf = 0.86) and 2 (Rf = 0.88). Stoechospermum polypodioides (J.V. Lamouroux) J. Agardh crude tannin was highly effective against A. devastans using the OT method (LC50, 0.044%) when compared with the standard gallic acid (LC50, 0.044%) and tannic acid (LC50, 0.122%). Similarly, S. wightii fraction 2 (LC50, 0.007%) showed a greater insecticidal effect against A. devastans adults in OT than gallic acid (LC50, 0.034%) and tannic acid (LC50, 0.022%). The mechanism of action results show that A. devastans adults treated with crude tannin of T. ornata had significantly decreased amylase, protease (p = 0.005), and invertase (p = 0.003) levels when compared with the detoxification enzymes. The levels of glycosidase, lactate dehydrogenase, esterase, lipase, invertase, and acid phosphate activities (p = 0.005) of S. wightii were reduced when compared with those of the Vijayneem and chemical pesticide Monocrotophos. In adult insects treated with LC50 concentrations of S. wightii tannin fraction 1, the total body protein (9.00 µg/µL) was significantly reduced (OT, LC50-0.019%). The SDS-PAGE analysis results also show that S. wightii tannin fraction 1 (OT and CT), fraction 2 (OT), and S. polypodioides fraction 2 (CT) had a significant effect on the total body portion level, appearance, and disappearance of some proteins and polypeptides. This study shows that the selected brown macroalgae can be utilized for the safer management of cotton leaf hoppers.

18.
Front Mol Biosci ; 10: 1257859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745689

RESUMEN

Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.

19.
Heliyon ; 9(8): e18657, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576196

RESUMEN

The predatory stink bug, Arma custos, is a highly effective beneficial predator of crop pests. The lack of gene information related to xenobiotic detoxification and odorant degrading enzymes in the predator stink bugs to date has limited our ability for more in-depth studies of biological control. Hence, we conducted de novo assembly of the A. custos transcriptome from guts, antennae, and other tiussue samples of 5th instar larvae using Illumina sequencing technology. A total of 91, 50 and 23 genes of cytochrome P450 monooxygenases (CYPs), carboxyl/choline esterases (CCEs) and glutathione S-transferases (GSTs) genes were identified, respectively. Gene expansions of CYP3 and CYP4 clans and the hormone and pheromone processing CCE class were found in A. custos. Analysis of tissue-specific expression patterns showed that 37 CYPs, 14 CCEs and 8 GSTs were enriched in guts, and 6 CYPs, 5 CCEs and 2 GSTs were up-regulated in antennae, suggesting their potential roles on xenobiotics detoxification and ordorant degradation. Gene information data presented here could be useful for a deeper understanding of the ecology, physiology and behavior of this beneficial species and could be helpful to improve their bio-control efficiency.

20.
aBIOTECH ; 4(2): 155-171, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37581023

RESUMEN

Deoxynivalenol (DON) is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen Fusarium graminearum. It is a virulence factor that is important in the spread of F. graminearum within cereal heads, and it causes serious yield losses and significant contamination of cereal grains. In recent decades, genetic and genomic studies have facilitated the characterization of the molecular pathways of DON biosynthesis in F. graminearum and the environmental factors that influence DON accumulation. In addition, diverse scab resistance traits related to the repression of DON accumulation in plants have been identified, and experimental studies of wheat-pathogen interactions have contributed to understanding detoxification mechanisms in host plants. The present review illustrates and summarizes the molecular networks of DON mycotoxin production in F. graminearum and the methods of DON detoxification in plants based on the current literature, which provides molecular targets for crop improvement programs. This review also comprehensively discusses recent advances and challenges related to genetic engineering-mediated cultivar improvements to strengthen scab resistance. Furthermore, ongoing advancements in genetic engineering will enable the application of these molecular targets to develop more scab-resistant wheat cultivars with DON detoxification traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA