Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Metab Pharmacokinet ; 58: 101028, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265438

RESUMEN

Cyclic peptides have attracted attention as new modalities for drug development owing to their unique pharmacokinetic and pharmacodynamic properties. Destruxin E, a 19-membered cyclodepsipeptide, is a promising candidate drug for cancer therapy. The purpose of the present study was to clarify the molecular mechanisms underlying membrane transport, metabolism, and the binding for target molecules of destruxin E in human cervical carcinoma HeLa cells used as a model of cancer cells. The influx transport and the intracellular metabolism of destruxin E were non-saturable and saturable, respectively, at up to 10 µM. The intracellular amounts of destruxin E and destruxin E-diol after incubation of destruxin E with the cells significantly decreased at 4 °C compared to those at 37 °C. Destruxin E-diol, but not destruxin E, undergoes efflux transport out of cells via P-gp/MDR1/ABCB1 and BCRP/ABCG2. The epoxide hydrolase EPHX2 functions as a potent metabolizing enzyme that can convert the epoxide of destruxin E to the destruxin E-diol. Treatment with an EPHX2 inhibitor increased the intracellular destruxin E levels and enhanced the inhibitory activity of vacuolar type-H+ ATPase. These results suggest that epoxide hydrolase could be a regulatory factor for intracellular destruxin E levels and its pharmacological activity.

2.
Pestic Biochem Physiol ; 197: 105654, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072529

RESUMEN

Destruxin A, a non-ribosomal peptide toxin produced by Metarhizium, exhibits potent insecticidal activity by targeting various tissues, organs, and cells of insects. Our previous research has revealed that DA possesses the ability to bind to multiple proteins. In this study, we aimed to identify the most sensitive binding proteins of DA and investigate the physiological processes in which DA regulated. Through RNAi technology, we screened 22 binding proteins of DA in silkworm hemolymph. Among them, the juvenile hormone binding protein (JHBP), a hormone transport protein crucial for growth and development regulation, exhibited the highest sensitivity to DA. Subsequent experiments demonstrated that DA could inhibit the body weight gain of silkworm larvae, accelerate the pupation occurrence, and modulate the content of free juvenile hormone (JH) in the hemolymph. We also observed that DA could induce conformational changes in both the JHBP and the JHBP-JH binding complex. Notably, at low dosage, DA influenced the binding of JHBP to JH, while at high dosage, it irreversibly affected the binding of JHBP to JH. Molecular docking and point-mutant experiments suggested that DA might affect the N-arm of JHBP, which is responsible for JH binding. Additionally, we discovered that JHBP is widely distributed in various tissues of the silkworm, including the epidermis, gut, fat body, Malpighian tubule, gonad, muscle, trachea, and hemocyte. This study provides novel insights into the insecticidal mechanism of DA and enhances our understanding of the pathogenic process of Metarhizium.


Asunto(s)
Bombyx , Mariposas Nocturnas , Animales , Hormonas Juveniles/farmacología , Hormonas Juveniles/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Portadoras/química , Mariposas Nocturnas/metabolismo , Bombyx/metabolismo , Proteínas de Insectos/metabolismo
3.
PeerJ ; 11: e15726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583910

RESUMEN

Species of the genus Metarhizium are characterized by a multitrophic lifestyle of being arthropod parasites, rhizosphere colonizers, endophytes, and saprophytes. The process of adaptation to various organisms and substrates may lead to specific physiological alterations that can be elucidated by passaging through different hosts. Changes in virulence and cultivation properties of entomopathogenic fungi subcultured on different media or passaged through a live insect host are well known. Nevertheless, comparative in-depth physiological studies on fungi after passaging through insect or plant organisms are scarce. Here, virulence, plant colonization, hydrolytic enzymatic activities, toxin production, and antimicrobial action were compared between stable (nondegenerative) parent strain Metarhizium robertsii MB-1 and its reisolates obtained after eight passages through Galleria mellonella larvae or Solanum lycopersicum or after subculturing on the Sabouraud medium. The passaging through the insect caused similar physiological alterations relative to the plant-based passaging: elevation of destruxin A, B, and E production, a decrease in protease and lipase activities, and lowering of virulence toward G. mellonella and Leptinotarsa decemlineata as compared to the parent strain. The reisolates passaged through the insect or plant showed a slight trend toward increased tomato colonization and enhanced antagonistic action on tomato-associated bacterium Bacillus pumilus as compared to the parental strain. Meanwhile, the subculturing of MB-1 on the Sabouraud medium showed stability of the studied parameters, with minimal alterations relative to the parental strain. We propose that the fungal virulence factors are reprioritized during adaptation of M. robertsii to insects, plants, and media.


Asunto(s)
Metarhizium , Mariposas Nocturnas , Animales , Virulencia , Insectos/microbiología , Mariposas Nocturnas/microbiología , Plantas
4.
Front Microbiol ; 14: 1210647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333627

RESUMEN

Introduction: Destruxin A (DA) is a mycotoxin isolated from the entomopathogenic fungus Metarhizium anisopliae which has demonstrated inhibitory activity against various insect species. However, the mechanism of inhibition on target sites in insects remains unknown. Methods: In this research, the dose-response relationship between DA and morphological changes in body tissues and organs of domestic silkworm, Bombyx mori, were investigated by histopathological methods to identify the target sites that responded to DA. Results and Discussion: The results showed that responses of individual tissues and organs varied with DA dosage and treatment time. At low doses (i.e., 0.01µg/g), the hemocytes were the most sensitive to DA with morphological changes apparent at 6 h after treatment. However, the muscle cells, fat body, and Malpighian tubules were unaltered. At higher doses (i.e., > 0.1µg/g), morphological changes were observed in muscle cells, fat body, and Malpighian tubules at 24 h after treatment. The results indicated that DA can be an immunosuppressant by damaging host cells like hemocytes, and at higher doses may potentially impact other physiological processes, including muscle function, metabolism, and excretion. The information presented in the current study will facilitate development of mycopesticides and novel immunosuppressants.

5.
BMC Microbiol ; 23(1): 96, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016280

RESUMEN

Destruxin A (DA) is a cyclo-hexadepsipeptidic insecticidal mycotoxin isolated from the entomopathogenic fungi, Metarhizium spp. However, its mode of action is unknown. In this study, we isolated 149 candidate DA-binding proteins by drug affinity response target stability, and determined the interactions of 80 canditates with DA in vitro by surface plasmon resonance. The affinity coefficients (KD) ranged from 24 to 469 µM. Binding proteins were functionally diverse and included cytoskeletal components and cell motility, protein transcription and translation pathways, ubiquitin dependent protein metabolic processes, nucleus pore entry and exit, and endoplasmic reticulum vesicle transport and etc. Electron microscopy revealed that DA damaged the cytoskeleton and multiple organelles, disrupted cell adhesion and motility, and led to cell death. DA appeared to have a multi-targeted approach to cellular structures and multiple life processes, leading to cell death. The results of this study could provide molecular evidence for the analysis of the insecticidal toxicology of DA and further improve the study of the pathogenic insect mechanism of Metarhizium.


Asunto(s)
Depsipéptidos , Insecticidas , Metarhizium , Animales , Proteínas Portadoras , Depsipéptidos/farmacología , Depsipéptidos/química , Depsipéptidos/metabolismo , Insectos/metabolismo , Insecticidas/farmacología , Proteínas de Insectos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(12): e2205140120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917667

RESUMEN

The Drosophila systemic immune response against many Gram-positive bacteria and fungi is mediated by the Toll pathway. How Toll-regulated effectors actually fulfill this role remains poorly understood as the known Toll-regulated antimicrobial peptide (AMP) genes are active only against filamentous fungi and not against Gram-positive bacteria or yeasts. Besides AMPs, two families of peptides secreted in response to infectious stimuli that activate the Toll pathway have been identified, namely Bomanins and peptides derived from a polyprotein precursor known as Baramicin A (BaraA). Unexpectedly, the deletion of a cluster of 10 Bomanins phenocopies the Toll mutant phenotype of susceptibility to infections. Here, we demonstrate that BaraA is required specifically in the host defense against Enterococcus faecalis and against the entomopathogenic fungus Metarhizium robertsii, albeit the fungal burden is not altered in BaraA mutants. BaraA protects the fly from the action of distinct toxins secreted by these Gram-positive and fungal pathogens, respectively, Enterocin V and Destruxin A. The injection of Destruxin A leads to the rapid paralysis of flies, whether wild type (WT) or mutant. However, a larger fraction of wild-type than BaraA flies recovers from paralysis within 5 to 10 h. BaraAs' function in protecting the host from the deleterious action of Destruxin is required in glial cells, highlighting a resilience role for the Toll pathway in the nervous system against microbial virulence factors. Thus, in complement to the current paradigm, innate immunity can cope effectively with the effects of toxins secreted by pathogens through the secretion of dedicated peptides, independently of xenobiotics detoxification pathways.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Toll-Like/metabolismo , Transducción de Señal , Péptidos/metabolismo , Hongos/metabolismo , Bacterias Grampositivas/metabolismo
7.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431809

RESUMEN

Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin produced by the entomopathogenic fungus Metarhizium anisopliae, has insecticidal activity, but its molecular mechanism of action is still not clear. Three proteins with modification-related functions, calreticulin (BmCRT), dipeptidyl peptidase Ⅲ (BmDPP3), and protein disulfide isomerase A5 (BmPDIA5), were selected to verify the interactions with DA in this study. The kinetic data of the interactions were measured by surface plasmon resonance (SPR) and bio-layer interferometry (BLI) in vitro. The KD values of DA with BmCRT, BmDPP3, and BmPDIA5 ranged from 10-4 to 10-5 mol/L, which suggested that the three proteins all had fairly strong interactions with DA. Then, it was found that DA in a dose-dependent manner affected the interactions of the three proteins with their partners in insect two-hybrid tests in SF-9 cells. Furthermore, the results of enzyme activities by ELISA indicated that DA could inhibit the activity of BmDPP3 but had no significant effect on BmPDIA5. In addition, DA induced the upregulation of BmDPP3 and the downregulation of BmCRT. The results prove that BmCRT, BmDPP3, and BmPDIA5 are all binding proteins of DA. This study might provide new insights to elucidate the molecular mechanism of DA.


Asunto(s)
Bombyx , Depsipéptidos , Animales , Resonancia por Plasmón de Superficie , Regulación hacia Abajo
8.
Pest Manag Sci ; 78(5): 1915-1924, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35080798

RESUMEN

BACKGROUND: Destruxin A (DA) is a mycotoxin secreted by entomogenous fungi, such as Metarhizium anisopliae, which has broad-spectrum insecticidal activity. Insect innate immunity provides resistance against the invasion of entomopathogenic fungi. Previous studies have shown that DA could inhibit the immune response, however, the suppressive mechanism of DA on prophenoloxidase system is still unknown. RESULTS: Based on the transcriptome of Aphis citricola, we screened the scavenger receptor class B(AcSR-B)and identified that it significantly responds to DA. Spatio-temporal expression analysis showed that AcSR-B is highly expressed in adult stage and is mainly distributed in the abdominal region. We further revealed that both M. anisopliae and Escherichia coli could suppress the expression of AcSR-B at 24 h, and that the expressed recombinant protein rAcSR-B possessed agglutination activity to M. anisopliae and E. coli. DA could suppress the protein expression of AcSR-B. In addition, RNA interference of AcSR-B caused death of A. citricola in a dose-dependent manner, and RNA interference of AcSR-B increased mortality in A. citricola under the same lethal concentration of DA. The inhibiting effect of AcSR-B silencing was similar with the DA treatment upon phenol oxidase (PO) activity of A. citricola hemolymph. DA could not decrease PO activity further after AcSR-B silencing. CONCLUSION: Destruxin A inhibits melanization by suppressing AcSR-B in A. citricola. Our findings are helpful in understanding the underlying molecular mechanism of the DA suppressing immune system, and uncover a potential molecular target for double-stranded RNA (dsRNA) insecticides.


Asunto(s)
Áfidos , Depsipéptidos , Insecticidas , Animales , Áfidos/metabolismo , Depsipéptidos/química , Depsipéptidos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Receptores Depuradores
9.
J Fungi (Basel) ; 7(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34436132

RESUMEN

Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin produced by the entomopathogenic fungus Metarhizium anisopliae, exhibits insecticidal activities in a wide range of pests and is known as an innate immunity inhibitor. However, its mechanism of action requires further investigation. In this research, the interactions of DA with the six aminoacyl tRNA synthetases (ARSs) of Bombyx mori, BmAlaRS, BmCysRS, BmMetRS, BmValRS, BmIleRS, and BmGluProRS, were analyzed. The six ARSs were expressed and purified. The BLI (biolayer interferometry) results indicated that DA binds these ARSs with the affinity indices (KD) of 10-4 to 10-5 M. The molecular docking suggested a similar interaction mode of DA with ARSs, whereby DA settled into a pocket through hydrogen bonds with Asn, Arg, His, Lys, and Tyr of ARSs. Furthermore, DA treatments decreased the contents of soluble protein and free amino acids in Bm12 cells, which suggested that DA impedes protein synthesis. Lastly, the ARSs in Bm12 cells were all downregulated by DA stress. This study sheds light on exploring and answering the molecular target of DA against target insects.

10.
J Fungi (Basel) ; 7(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201102

RESUMEN

Destruxin A (DA), a mycotoxin isolated from the entomopathogenic fungus Metarhizium anisopliae, has good insecticidal and immune-inhibitory activity, but the action mechanism has not yet been elucidated. In order to identify the DA-binding proteins, we conducted drug affinity responsive target stability (DARTS) experiments, which indicated that the silkworm's (Bombyx mori) transmembrane protein 214 (BmTEME214) and protein transport protein SEC23A isoform X2 (BmSEC23) are the potential DA-binding proteins. The current research was focused on validation of the interaction between DA and these two proteins via bio-layer interferometry (BLI) in vitro, insect two-hybrid (I2H) in Sf9 cells, and RNAi in the insect. The results of the BLI tests showed that DA has strong affinity to bind BmTEME214 and BmSEC23 proteins with a KD value of 0.286 and 0.291 µM, respectively. In the I2H experiments, DA inhibited (at 0.02 µg/mL) and activated (at 0.002-0.0002 µg/mL) the protein interactions of BmSEC23-BmSEC13, but it only inhibited the BmTMEM214-BmSEC13L interaction. Furthermore, in the RNAi tests, an apparent increase in the silkworm's mortality was recorded in the joint treatment of DA with dsBmSEC23 or dsBmTMEM214 when compared with the single treatment of DA (1.5 µg/g body), 40 µg/g body dsBmSEC23, or dsBmTMEM214. This research confirmed that BmSEC23 and BmTMEM214 are the DA-binding proteins and provided new insights to understand the action mechanism of DA.

11.
Toxins (Basel) ; 11(6)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216655

RESUMEN

Destruxin A (DA), a major secondary metabolite of Metarhizium anisopliae, has anti-immunity to insects. However, the detailed mechanism and its interactions with target proteins are elusive. Previously, three immunophilins, peptidyl-prolyl cis-trans isomerase (BmPPI), FK506 binding-protein 45 (BmFKBP45) and BmFKBP59 homologue, were isolated from the silkworm, Bombyx mori Bm12 cell line following treatment with DA, which suggested that these proteins were possible DA-binding proteins. To validate the interaction between DA and the three immunophilins, we performed bio-layer interferometry (BLI) assay, and the results showed that DA has interaction with BmPPI, whose affinity constant value is 1.98 × 10-3 M and which has no affinity with FKBP45 and FKBP59 homologue in vitro. Furthermore, we investigated the affinity between DA and human PPI protein (HsPPIA) and the affinity constant (KD) value is 2.22 × 10-3 M. Additionally, we compared the effects of silkworm and human PPI proteins produced by DA and immunosuppressants, cyclosporine A (CsA), and tacrolimus (FK506), by employing I2H (insect two-hybrid) in the SF-9 cell line. The results indicated that in silkworm, the effects created by DA and CsA were stronger than FK506. Furthermore, the effects created by DA in silkworm were stronger than those in humans. This study will offer new thinking to elucidate the molecular mechanism of DA in the immunity system of insects.


Asunto(s)
Depsipéptidos/toxicidad , Inmunofilinas/metabolismo , Proteínas de Insectos/metabolismo , Micotoxinas/toxicidad , Animales , Bombyx , Inmunofilinas/genética , Proteínas de Insectos/genética , Células Sf9 , Técnicas del Sistema de Dos Híbridos
12.
Toxins (Basel) ; 11(2)2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682818

RESUMEN

Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin secreted by the entomopathogenic fungus Metarhizium anisopliae, was reported to have an insecticidal effect and anti-immunity activity. However, its molecular mechanism of action remains unclear. Previously, we isolated several potential DA-affinity (binding) proteins in the Bombyx mori Bm12 cell line. By docking score using MOE2015, we selected three proteins-BmTudor-sn, BmPiwi, and BmAGO2-for further validation. First, using Bio-Layer Interferometry in vitro, we found that BmTudor-sn had an affinity interaction with DA at 125, 250, and 500 µM, while BmPiwi and BmAGO2 had no interaction signal with DA. Second, we employed standard immunoblotting to verify that BmTudor-sn is susceptible to DA, but BmPiwi and BmAGO2 are not. Third, to verify these findings in vivo, we used a target engagement strategy based on shifts in protein thermal stability following ligand binding termed the cellular thermal shift assay and found no thermal stability shift in BmPiwi and BmAGO2, whereas a shift was found for BmTudor-sn. In addition, in BmTudor-sn knockdown Bm12 cells, we observed that cell viability increased under DA treatment. Furthermore, insect two-hybrid system results indicated that the key site involved in DA binding to BmTudor-sn was Leu704. In conclusion, in vivo and in vitro experimental evidence indicated that BmTudor-sn is a binding protein of DA in silkworm Bm12 cells at the 100 µM level, and the key site of this interaction is Leu704. Our results provide new perspectives to aid in elucidating the molecular mechanism of action of DA in insects and developing new biopesticide.


Asunto(s)
Proteínas Portadoras/metabolismo , Depsipéptidos/toxicidad , Endonucleasas/metabolismo , Proteínas de Insectos/metabolismo , Animales , Bombyx , Proteínas Portadoras/química , Línea Celular , Depsipéptidos/química , Endonucleasas/química , Proteínas de Insectos/química , Simulación del Acoplamiento Molecular , Dominio Tudor
13.
BMC Genomics ; 20(1): 1036, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888481

RESUMEN

BACKGROUND: Alternaria brassicae, a necrotrophic pathogen, causes Alternaria Leaf Spot, one of the economically important diseases of Brassica crops. Many other Alternaria spp. such as A. brassicicola and A. alternata are known to cause secondary infections in the A. brassicae-infected Brassicas. The genome architecture, pathogenicity factors, and determinants of host-specificity of A. brassicae are unknown. In this study, we annotated and characterised the recently announced genome assembly of A. brassicae and compared it with other Alternaria spp. to gain insights into its pathogenic lifestyle. RESULTS: We also sequenced the genomes of two A. alternata isolates that were co-infecting B. juncea using Nanopore MinION sequencing for additional comparative analyses within the Alternaria genus. Genome alignments within the Alternaria spp. revealed high levels of synteny between most chromosomes with some intrachromosomal rearrangements. We show for the first time that the genome of A. brassicae, a large-spored Alternaria species, contains a dispensable chromosome. We identified 460 A. brassicae-specific genes, which included many secreted proteins and effectors. Furthermore, we have identified the gene clusters responsible for the production of Destruxin-B, a known pathogenicity factor of A. brassicae. CONCLUSION: The study provides a perspective into the unique and shared repertoire of genes within the Alternaria genus and identifies genes that could be contributing to the pathogenic lifestyle of A. brassicae.

14.
Cancers (Basel) ; 10(10)2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257507

RESUMEN

BACKGROUND: Drug resistance represents a major challenge for treating patients with colon cancer. Accumulating evidence suggests that Insulin-like growth factor (IGF)-associated signaling promotes colon tumorigenesis and cancer stemness. Therefore, the identification of agents, which can disrupt cancer stemness signaling, may provide improved therapeutic efficacy. METHODS: Mimicking the tumor microenvironment, we treated colon cancer cells with exogenous IGF1. The increased stemness of IGF1-cultured cells was determined by ALDH1 activity, side-population, tumor sphere formation assays. Destruxin B (DB) was evaluated for its anti-tumorigenic and stemness properties using cellular viability, colony-formation tests. The mimic and inhibitor of miR-214 were used to treat colon cancer cells to show its functional association to DB treatment. In vivo mouse models were used to evaluate DB's ability to suppress colon tumor-initiating ability and growth inhibitory function. RESULTS: IGF1-cultured colon cancer cells showed a significant increase in 5-FU resistance and enhanced stemness properties, including an increased percentage of ALDH1+, side-population cells, tumor sphere generation in vitro, and increased tumor initiation in vivo. In support, using public databases showed that increased IGF1 expression was significantly associated with a poorer prognosis in patients with colon cancer. DB, a hexadepsipeptide mycotoxin, was able to suppress colon tumorigenic phenotypes, including colony and sphere formation. The sequential treatment of DB, followed by 5-FU, synergistically inhibited the viability of colon cancer cells. In vivo studies showed that DB suppressed the tumorigenesis by 5-FU resistant colon cells, and in a greater degree when combined with 5-FU. Mechanistically, DB treatment was associated with decreased the mammalian target of rapamycin (mTOR) and ß-catenin expression and an increased miR-214 level. CONCLUSION: We provided evidence of DB as a potential therapeutic agent for overcoming 5-FU resistance induced by IGF1, and suppressing cancer stem-like properties in association with miR-214 regulation. Further investigation is warranted for its translation to clinical application.

15.
Front Immunol ; 9: 185, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472927

RESUMEN

Plutella xylostella, a global key pest, is one of the major lepidopteran pests of cruciferous vegetables owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of the entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects and has been used as an alternative control strategy to reduce harmful effects of insecticides. However, microRNA (miRNA)-regulated reactions against destruxin A have not been elucidated yet. Therefore, here, to identify immunity-related miRNAs, we constructed four small RNA libraries from destruxin A-injected larvae of P. xylostella at three different time courses (2, 4, and 6 h) with a control, and sequenced by Illumina. Our results showed that totally 187 known and 44 novel miRNAs were identified in four libraries by bioinformatic analysis. Interestingly, among differentially expressed known miRNAs, some conserved miRNAs, such as miR-263, miR-279, miR-306, miR-2a, and miR-308, predicted to be involved in regulating immunity-related genes, were also identified. Worthy to mention, miR-306 and miR-279 were also listed as common abundantly expressed miRNA in all treatments. The Kyoto Encyclopedia of Genes and Genomes pathway analysis also indicated that differentially expressed miRNAs were involved in several immunity-related signaling pathways, including toll signaling pathway, IMD signaling pathway, JAK-STAT signaling pathway, and cell adhesion molecules signaling pathway. To the best of our knowledge, this is the first comprehensive report of destruxin A-responsive immunity-related miRNAs in P. xylostella. Our findings will improve in understanding the role of destruxin A-responsive miRNAs in the host immune system and would be useful to develop biological control strategies for controlling P. xylostella.


Asunto(s)
Depsipéptidos/farmacología , MicroARNs/inmunología , Mariposas Nocturnas/inmunología , Animales , Perfilación de la Expresión Génica , Biblioteca de Genes , Genoma de los Insectos , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Larva/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Transducción de Señal , Transcriptoma
16.
J Agric Food Chem ; 65(45): 9849-9853, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29048160

RESUMEN

Destruxin A (DA) is a cyclodepsipeptidic mycotoxin isolated from the entomopathogenic fungus, Metarhizium anisopliae. It has insecticidal activity against host insect's innate immunity system, but the molecular mechanism is not yet elucidated. In our previous experiment, four HSPs (heat shock proteins, BmHSP70-3, BmHSP75, BmHSP83, and BmHSCP) were characterized from the specific protein electrophoretic bands of Bombyx mori Bm12 cell line treated with DA in the test of drug affinity responsive target stability (DARTS), which implied that these HSPs might be kinds of DA-affinity proteins, or DA induces them up-regulated expression. Therefore, in current research, the interactions of DA and HSPs were explored through analysis of bio-layer interferometry (BLI) employing FortBio OcteteQK. The expression levels of HSPs genes were surveyed by quantitative real-time polymerase chain reaction (qPCR). The results indicated that DA had no interactions with BmHSP70-3, BmHSP75, and BmHSP83, but had affinity to BmHSCP with a KD value of 88.1 µM, in BLI analysis. However, the expression levels of all HSPs genes were significantly up-regulated after the Bm12 cells were treated by DA. In conclusion, DA can induce the four HSPs expression in Bm12 cells, but DA only binds to BmHSCP. Our research provides new insights on understanding of the action mechanisms of destruxins.


Asunto(s)
Bombyx/metabolismo , Depsipéptidos/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Insectos/metabolismo , Micotoxinas/metabolismo , Animales , Bombyx/efectos de los fármacos , Bombyx/genética , Línea Celular , Depsipéptidos/farmacología , Proteínas de Choque Térmico/genética , Proteínas de Insectos/genética , Micotoxinas/farmacología , Unión Proteica
17.
Mol Immunol ; 88: 164-173, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28648996

RESUMEN

Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1) is a well known invasive insect species. Little information is available on immune system of B. tabaci to date. In this study, one of the Toll-like receptors (TLR; namely BtToll) was cloned in MEAM1 B. tabaci which contains an open reading frame of 3153bp, encoding putative 1050 amino acids. Phylogenetic analysis indicated that BtToll is highly identitical with other members of the TLR family. Transcripts of BtToll detected through qRT-PCR were expressed in all developmental stages of B. tabaci and the highest expression level was observed in the 3rd nymphal instar. BtToll was highly expressed in response to immune challenge. RNA interference was used to knockdown the BtToll expression in adults through the oral route which resulted in significant reduction of BtToll transcript. When the adults were challenged with a mycotoxin from entomogenous fungi - destruxin A (DA) and RNAi, the median lethal concentration (LC50) decreased by 70.67% compared to DA treatment only. Our results suggest that BtToll is an important component of the B. tabaci immune system. RNAi technology using dsToll combined with general control methods (using toxin only) can be used as a potential strategy in integrated B. tabaci management programs.


Asunto(s)
Infecciones Bacterianas/inmunología , Depsipéptidos/farmacología , Hemípteros/inmunología , Inmunidad Innata/genética , Micosis/inmunología , Receptores Toll-Like/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Inmunidad Innata/inmunología , Dosificación Letal Mediana , Estructura Secundaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores Toll-Like/metabolismo
18.
J Physiol ; 595(2): 523-539, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27373966

RESUMEN

KEY POINTS: The digestive tract of larval and adult Drosophila is an excellent analogue of the mammalian gut. Enterocytes of the posterior midgut are separated by septa, with no paracellular path, and therefore perform both immune and transport functions. Using microperfusion electrophysiology, we show that larvae emerging from the embryo into sterile medium have symmetrical apical and basal membrane conductances while larvae emerging into non-sterile medium have apical membranes fivefold more conductive than basal membranes. The channels inserted into the apical membranes could originate in microbiata or host and mediate recognition of microbes. Entomopathogenic cyclic peptide toxins deplete intracellular ions reversibly, forming transient ion channels that do not conduct water, unlike an ionophore like nystatin that depletes ions irreversibly. We show the feasibility of studying the interaction of a single microbial species, or tractable combinatorials of microbial species, with only enterocytes in the primary epithelial barrier. ABSTRACT: Microbiota colonizing exposed epithelial surfaces are vital for sustenance of metazoan life, but communication between microbiota, epithelial cells and the host immune system is only beginning to be understood. We address this issue in the posterior midgut epithelium of Drosophila larvae where nutrient transport and immune functions are exclusively transcellular. We showed that larvae emerging into a sterile post-embryonic environment have symmetrical apical and basal membranes. In contrast, larvae emerging into non-sterile media, the source of microbiota, have markedly asymmetrical membranes, with apical membrane conductance more than fivefold higher than the basal membrane. As an example of pathogen action, we showed that the entomopathogenic fungal toxin destruxin A (Dx) depleted intracellular ions. Reversibility of action of Dx was verified by bilayer reconstitution in forming transient non-specific channels that conduct ions but not water. Dx was also less effective from the apical side as compared to the basal side of the epithelium. We also showed that intercellular septa are not conductive in non-sterile cells, even though most cells are isopotential. Luminal microbiota therefore impart asymmetry to the epithelium, by activation of apical membrane conductance, enhancing inter-enterocyte communication, separated by insulating septa, via the gut lumen. These results also open the possibility of studying the basis of bidirectional molecular conversation specifically between enterocytes and microbiota that enables discrimination between commensals and pathogens, establishment of the former, and elimination of the latter.


Asunto(s)
Electrólitos/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Animales , Depsipéptidos/farmacología , Drosophila melanogaster , Mucosa Intestinal/efectos de los fármacos , Larva , Macrólidos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Micotoxinas/farmacología , ATPasas de Translocación de Protón/antagonistas & inhibidores
19.
Molecules ; 22(1)2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-28036076

RESUMEN

Destruxin A (DA), a cyclodepsipeptidic mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has anti-immunity activity against insects, but the mechanism of immune regulation is not clear yet. In our previous experiment, the significant expression changes of Bm_nscaf2838_045, Bm_nscaf2674_066, and Bm_nscaf2767_133 genes in a silkworm's hemocytes were found, which suggested that these genes might be involved in insect's innate immunity. In the current experiment, the silkworm cell line Bm12 was used to survey the expression levels of these genes after the cells were treated with DA and the transcription factors BmRel, BmRelish1 and BmRelish2 were silenced by specific siRNA. The results indicated that, after the cells were treated by DA, the gene expression level of BmRelish2 was significantly downregulated, but BmRel and BmRelish1 were not changed. The results also showed that the gene expression levels of Bm_nscaf2838_045 and Bm_nscaf2674_066 had similar phenomena, i.e., downregulation with individual BmRelish1 gene silence or DA treatment, upregulation with combination of BmRelish1 gene silence and DA treatment, upregulation with individual BmRelish2 gene silence, and downregulation with combination of BmRelish2 gene silence plus DA treatment, but no changes in the BmRel gene silence combined with DA treatment. For the Bm_nscaf2767_133 gene, the downregulated expressions were found in individual BmRelish2 gene silence or DA treatment, upregulation in the combination treatment of BmRelish2 gene silence plus DA, and the individual treatment of BmRel or BmRelish1 silence. It is suggested that expressions of the Bm_nscaf2838_045 and Bm_nscaf2674_066 genes are closely related to the Imd signal pathway, but Bm_nscaf2767_133 genes might involve in both Toll and Imd pathways. Furthermore, the BmRelish1 gene acts as an activator and the BmRelish2 gene acts as a repressor for both Bm_nscaf2838_045 and Bm_nscaf2674_066 gene expressions. It also implies that DA may participate in the splicing process of BmRelish where BmRelish2 was promoted. Our research will provide new insights on the understanding of the activity mechanisms of destruxins.


Asunto(s)
Bombyx/genética , Depsipéptidos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Proteínas de Insectos/genética , Micotoxinas/farmacología , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos , Animales , Bombyx/inmunología , Línea Celular , Inmunidad Innata/genética , Proteínas de Insectos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Factores de Transcripción/metabolismo
20.
Methods Mol Biol ; 1477: 191-209, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27565501

RESUMEN

The entomopathogenic fungi Metarhizium brunneum, Beauveria bassiana, and B. brongniartii are widely applied as biological pest control agent in OECD countries. Consequently, their use has to be flanked by a risk management approach, which includes the need to monitor the fate of their relevant toxic metabolites. There are still data gaps claimed by regulatory authorities pending on their identification and quantification of relevant toxins or secondary metabolites. In this chapter, analytical methods are presented allowing the qualitative and quantitative analysis of the relevant toxic B. brongniartii metabolite oosporein and the three M. brunneum relevant destruxin (dtx) derivatives dtx A, dtx B, and dtx E.


Asunto(s)
Metaboloma , Metabolómica , Hongos Mitospóricos/metabolismo , Metabolismo Secundario , Beauveria/metabolismo , Cromatografía Líquida de Alta Presión , Metabolómica/métodos , Metarhizium/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA