Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37165577

RESUMEN

To assess the feasibility of high-temperature aminolysis of deoxyribooligonucleotides containing rare bases as a method to determine their base sequence, the 2'-ß-D-deoxyribosides of 5-bromouracil, 2-aminopurine, uracil, adenine, cytosine, 5-methylcytosine, hypoxanthine, N6-methyladenine, N4-ethylcytosine, and guanine were compared as to their rate of degradation in 0.5 M aqueous pyrrolidine at 110 °C, conditions used earlier in the analysis of oligonucleotides containing only the canonical bases. The reaction mixtures were analyzed by chromatography on Zorbax XDB-CN and UV absorption spectroscopy. The first-order rate constants for the nucleoside degradations decreased in the above order, spanning a wide range of reactivities. Some of these nucleosides were also tested in 0.5 M aqueous ammonia at 110 °C, giving similar first-order rate constants, except for 2'-deoxyguanosine, which is much more reactive with ammonia, due to the lower basicity of this reagent, leaving a larger proportion of the nucleoside in the non-ionized form, susceptible to nucleophilic attack at the base. Short oligothymidylates containing a single 2-aminopurine, adenine, guanine, or cytosine unit in central position were tested in pyrrolidinolysis, to determine the cleavage rates at these sites and the dependence of these cleavage rates on oligonucleotide length. A model decadeoxyribonucleotide containing all four canonical bases was also pyrrolidinolyzed, followed by ion-exchange chromatography, to deduce the nucleotide sequence from the resulting chromatographic profile.


Asunto(s)
Desoxirribonucleósidos , Oligodesoxirribonucleótidos , Análisis de Secuencia de ADN , Desoxirribonucleósidos/análisis , Desoxirribonucleósidos/química , Oligodesoxirribonucleótidos/análisis , Oligodesoxirribonucleótidos/química , Solventes , Cinética
2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293464

RESUMEN

The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) 'knockout' (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid ß-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells. DNs treatment also altered global nuclear gene expression, with key gene sets including 'respiratory electron transport' and 'formation of ATP by chemiosmotic coupling' increased in both CON and ECHS1 KO cells. Genes involved in OXPHOS complex I biogenesis were also upregulated in both CON and ECHS1 KO cells following dNs treatment, with a corresponding increase in the steady-state levels of holocomplex I in ECHS1 KO cells. Steady-state levels of OXPHOS complex V, and the CIII2/CIV and CI/CIII2/CIV supercomplexes, were also increased by dNs treatment in ECHS1 KO cells. Importantly, treatment with dNs increased both basal and maximal mitochondrial oxygen consumption in ECHS1 KO cells when metabolizing either glucose or the fatty acid palmitoyl-L-carnitine. These findings highlight the ability of dNs to improve overall mitochondrial respiratory function, via the stimulation mitochondrial biogenesis, in the face of combined defects in OXPHOS and FAO due to ECHS1 deficiency.


Asunto(s)
Enoil-CoA Hidratasa , Biogénesis de Organelos , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , ADN Mitocondrial/genética , Ácidos Grasos/metabolismo , Glucosa , Carnitina , Desoxirribonucleósidos , Adenosina Trifosfato
3.
Front Immunol ; 13: 847171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355997

RESUMEN

Adenosine synthase A (AdsA) is a key virulence factor of Staphylococcus aureus, a dangerous microbe that causes fatal diseases in humans. Together with staphylococcal nuclease, AdsA generates deoxyadenosine (dAdo) from neutrophil extracellular DNA traps thereby igniting caspase-3-dependent cell death in host immune cells that aim at penetrating infectious foci. Powered by a multi-technological approach, we here illustrate that the enzymatic activity of AdsA in abscess-mimicking microenvironments is not restricted to the biogenesis of dAdo but rather comprises excessive biosynthesis of deoxyguanosine (dGuo), a cytotoxic deoxyribonucleoside generated by S. aureus to eradicate macrophages of human and animal origin. Based on a genome-wide CRISPR-Cas9 knock-out screen, we further demonstrate that dGuo-induced cytotoxicity in phagocytes involves targeting of the mammalian purine salvage pathway-apoptosis axis, a signaling cascade that is concomitantly stimulated by staphylococcal dAdo. Strikingly, synchronous targeting of this route by AdsA-derived dGuo and dAdo boosts macrophage cell death, indicating that S. aureus multiplexes death-effector deoxyribonucleosides to maximize intra-host survival. Overall, these data provide unique insights into the cunning lifestyle of a deadly pathogen and may help to design therapeutic intervention strategies to combat multidrug-resistant staphylococci.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Desoxiadenosinas/farmacología , Mamíferos/metabolismo , Neutrófilos , Staphylococcus/metabolismo
4.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244971

RESUMEN

The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that aim to stimulate mitochondrial biogenesis to boost ATP generation above a critical disease threshold. Here, we examine the effects of the peroxisome proliferator-activated receptor γ (PPARγ) activator pioglitazone (PioG), in combination with deoxyribonucleosides (dNs), on mitochondrial biogenesis in cybrid cells containing >90% of the m.3243A>G mutation associated with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). PioG + dNs combination treatment increased mtDNA copy number and mitochondrial mass in both control (CON) and m.3243A>G (MUT) cybrids, with no adverse effects on cell proliferation. PioG + dNs also increased mtDNA-encoded transcripts in CON cybrids, but had the opposite effect in MUT cybrids, reducing the already elevated transcript levels. Steady-state levels of mature oxidative phosphorylation (OXPHOS) protein complexes were increased by PioG + dNs treatment in CON cybrids, but were unchanged in MUT cybrids. However, treatment was able to significantly increase maximal mitochondrial oxygen consumption rates and cell respiratory control ratios in both CON and MUT cybrids. Overall, these findings highlight the ability of PioG + dNs to improve mitochondrial respiratory function in cybrid cells containing the m.3243A>G MELAS mutation, as well as their potential for development into novel therapies to treat mitochondrial disease.


Asunto(s)
Desoxirribonucleósidos/farmacología , Células Híbridas/metabolismo , Síndrome MELAS/patología , Mitocondrias/metabolismo , Pioglitazona/farmacología , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , ADN Mitocondrial/genética , Dosificación de Gen , Humanos , Células Híbridas/efectos de los fármacos , Síndrome MELAS/genética , Mitocondrias/efectos de los fármacos , Mutación/genética , Fosforilación Oxidativa/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-30942138

RESUMEN

Degradation of 2'-deoxyribonucleosides in 0.5 M aqueous pyrrolidine at 110 °C proceeds at different rates, ordered as deoxyuridine > deoxyadenosine > deoxycytidine > deoxyguanosine ≫ deoxythymidine. Deoxyadenosine degradation produces the free base, adenine, while deoxycytidine by deamination produces deoxyuridine, and then uracil. The solvolysis of deoxyadenosine has an activation energy of 23.3 kcal/mol. Ammonolysis is slower than pyrrolidinolysis for deoxyadenosine, but faster for deoxyguanosine. In pyrrolidinolysis of the trinucleotides, d-TGT and d-TAT, the guanine moiety reacts faster than the adenine moiety. These trends are interpreted in terms of the ionization of the guanine moieties under basic conditions, rendering them less susceptible to nucleophilic attack.


Asunto(s)
Aminas/química , Desoxirribonucleósidos/química , Compuestos Heterocíclicos/química , Calor , Cinética , Solventes , Termodinámica , Agua
6.
Cell Chem Biol ; 25(5): 585-594.e7, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29576531

RESUMEN

Transition metals are essential, but deregulation of their metabolism causes toxicity. Here, we report that the compound NSC319726 binds copper to induce oxidative stress and arrest glioblastoma-patient-derived cells at picomolar concentrations. Pharmacogenomic analysis suggested that NSC319726 and 65 other structural analogs exhibit lethality through metal binding. Although NSC319726 has been reported to function as a zinc ionophore, we report here that this compound binds to copper to arrest cell growth. We generated and validated pharmacogenomic predictions: copper toxicity was substantially inhibited by hypoxia, through an hypoxia-inducible-factor-1α-dependent pathway; copper-bound NSC319726 induced the generation of reactive oxygen species and depletion of deoxyribosyl purines, resulting in cell-cycle arrest. These results suggest that metal-induced DNA damage may be a consequence of exposure to some xenobiotics, therapeutic agents, as well as other causes of copper dysregulation, and reveal a potent mechanism for targeting glioblastomas.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cobre/metabolismo , Glioblastoma/tratamiento farmacológico , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Glioblastoma/metabolismo , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Tumorales Cultivadas
7.
Carbohydr Res ; 449: 125-133, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28780317

RESUMEN

Milligram quantities of α-D-ribofuranosyl 1-phosphate (sodium salt) (αR1P) were prepared by the phosphorolysis of inosine, catalyzed by purine nucleoside phosphorylase (PNPase). The αR1P was isolated by chromatography in >95% purity and characterized by 1H and 13C NMR spectroscopy. Aqueous solutions of αR1P were stable at pH 6.4 and 4 °C for several months. The isolated αR1P was N-glycosylated with different nitrogen bases (adenine, guanine and uracil) using PNPase or uridine phosphorylase (UPase) to give the corresponding ribonucleosides in high yield based on the glycosyl phosphate. This methodology is attractive for the preparation of stable isotopically labeled ribo- and 2'-deoxyribonucleosides because of the ease of product purification and convenient use and recycling of nitrogen bases. The approach eliminates the need for separate reactions to prepare individual furanose-labeled ribonucleosides, since only one ribonucleoside (inosine) needs to be labeled, if desired, in the furanose ring, the latter achieved by a high-yield chemical N-glycosylation. 2'-Deoxyribonucleosides were prepared from 2'-deoxyinosine using the same methodology with minor modifications.


Asunto(s)
Desoxirribonucleósidos/química , Desoxirribonucleósidos/síntesis química , Furanos/química , Fosfatos/química , Purina-Nucleósido Fosforilasa/metabolismo , Biocatálisis , Técnicas de Química Sintética , Glicosilación , Marcaje Isotópico , Cinética
8.
Free Radic Biol Med ; 107: 266-277, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27890638

RESUMEN

In cellular organisms composition of DNA is constrained to only four nucleobases A, G, T and C, except for minor DNA base modifications such as methylation which serves for defence against foreign DNA or gene expression regulation. Interestingly, this severe evolutionary constraint among other things demands DNA repair systems to discriminate between regular and modified bases. DNA glycosylases specifically recognize and excise damaged bases among vast majority of regular bases in the base excision repair (BER) pathway. However, the mismatched base pairs in DNA can occur from a spontaneous conversion of 5-methylcytosine to thymine and DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved special DNA repair systems that target the non-damaged DNA strand in a duplex to remove mismatched regular DNA bases. Mismatch-specific adenine- and thymine-DNA glycosylases (MutY/MUTYH and TDG/MBD4, respectively) initiated BER and mismatch repair (MMR) pathways can recognize and remove normal DNA bases in mismatched DNA duplexes. Importantly, in DNA repair deficient cells bacterial MutY, human TDG and mammalian MMR can act in the aberrant manner: MutY and TDG removes adenine and thymine opposite misincorporated 8-oxoguanine and damaged adenine, respectively, whereas MMR removes thymine opposite to O6-methylguanine. These unusual activities lead either to mutations or futile DNA repair, thus indicating that the DNA repair pathways which target non-damaged DNA strand can act in aberrant manner and introduce genome instability in the presence of unrepaired DNA lesions. Evidences accumulated showing that in addition to the accumulation of oxidatively damaged DNA in cells, the aberrant DNA repair can also contribute to cancer, brain disorders and premature senescence. For example, the aberrant BER and MMR pathways for oxidized guanine residues can lead to trinucleotide expansion that underlies Huntington's disease, a severe hereditary neurodegenerative syndrome. This review summarises the present knowledge about the aberrant DNA repair pathways for oxidized base modifications and their possible role in age-related diseases.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , ADN/metabolismo , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Animales , Senescencia Celular , ADN/química , Humanos , Oxidación-Reducción , Estrés Oxidativo
9.
Chinese Circulation Journal ; (12): 36-40, 2017.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-508044

RESUMEN

Objective:To investigate the serum expression of long non-coding RNA overlapping transcription content KCNQ1OT1 (KCNQ1) gene in patients with coronary artery disease (CAD) and its clinical significance. Methods:A total of 196 patients treated in our hospital were divided into 2 groups:CAD group and Control group, the patients were without CAD. n=98 in each group. Expression levels of serum KCNQ1OT1 and P53 were measured by quantitative RT-PCR;the relationship between KCNQ1OT1, P53 and clinical features in relevant patients were analyzed. Results:Compared with Control group, CAD group had increased expression of serum KCNQ1OT1 and decreased expression of P53, both P Conclusion:CAD patients had obviously increased serum level of KCNQ1OT1;KCNQ1OT1 was independently related to CAD occurrence.

10.
Nucleosides Nucleotides Nucleic Acids ; 35(10-12): 677-690, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27906638

RESUMEN

Deoxyribonucleoside kinases (dNKs) salvage deoxyribonucleosides (dNs) and catalyze the rate limiting step of this salvage pathway by converting dNs into corresponding monophosphate forms. These enzymes serve as an excellent model to study duplicated genes and their evolutionary history. So far, among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of dCK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters of the dCK/dGK enzymes encoded by these genes. The two dCK enzymes in G. gallus have broader substrate specificity than their human or X. laevis counterparts. Additionally, the duplicated dCK enzyme in G. gallus might have become mitochondria. Based on our study we postulate that changing and adapting substrate specificities and subcellular localization are likely the drivers behind the evolution of vertebrate dNKs.


Asunto(s)
Proteínas Aviares/genética , Timidina Quinasa/genética , Proteínas de Xenopus/genética , Animales , Proteínas Aviares/química , Pollos , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Cinética , Especificidad de Órganos , Timidina Quinasa/química , Proteínas de Xenopus/química , Xenopus laevis
11.
Int J Radiat Biol ; 92(9): 536-41, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27438130

RESUMEN

PURPOSE: The main aim of the present study is to gain mechanistic insights into the modulating effect of molecular hydrogen on the γ-radiation-induced alteration pathways of DNA nucleobases. MATERIALS AND METHODS: Aerated aqueous solutions of calf thymus DNA were exposed to a (60)Co source at doses ranging from 0 to 55 Gy under normoxic conditions, in the presence or not of 0.7 MPa hydrogen or helium. The measurement of several modified bases was performed using HPLC associated with electrospray ionization tandem pass spectrometry (HPLC-ESI-MS/MS). Bleaching of aqueous solutions of p-nitrosodimethylaniline (p-NDA) solutions was also used to allow the quantification of hydroxyl radical (•OH) formation. RESULTS: pNDA bleaching was significantly reduced in the presence of hyperbaric hydrogen. This is undoubtedly due to (•)OH scavenging by H2 since, under the same conditions, He had no effect. Similarly, base alterations were significantly reduced in the presence of hydrogen, as compared to controls under normal atmosphere or in the presence of helium. The relative proportions of modified nucleobases were not changed, showing that the only effect of H2 is to scavenge (•)OH without exhibiting reducing properties. CONCLUSIONS: Our findings demonstrate that H2 exerts a significant protection against radiation-induced DNA base damage in aqueous solutions, (•)OH scavenging being the only mechanism involved.


Asunto(s)
Daño del ADN , ADN/efectos de la radiación , Rayos gamma , Hidrógeno/química , Nucleótidos/química , Agua/química , Aire , ADN/genética , Relación Dosis-Respuesta en la Radiación , Nucleótidos/genética , Nucleótidos/efectos de la radiación , Dosis de Radiación , Soluciones , Relación Estructura-Actividad
12.
Arch Biochem Biophys ; 586: 33-44, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26427352

RESUMEN

The oxidation of the free nucleoside 2'-deoxyguanosine (dGuo) by singlet molecular oxygen ((1)O2) has been studied over the three last decades due to the major role of DNA oxidation products in process such as ageing, mutation and carcinogenesis. In the present work we investigated the dGuo oxidation by (1)O2 in the presence of the important low molecular antioxidant, glutathione, in its reduced (GSH) and oxidized (GSSG) forms. There were applied different conditions of concentration, pH, time of incubation, and the use of a [(18)O]-labeled thermolabile endoperoxide naphthalene derivative as a source of [(18)O]-labeled (1)O2. Data was obtained through high performance liquid chromatography (HPLC) and HPLC coupled to micrOTOF Q-II analysis of the main oxidation products: the diastereomers of spiroiminodihydantoin-2'-deoxyribonucleosides (dSp) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). An intriguing result was that 8-oxodGuo levels increased by 100 fold when dGuo was oxidized by (1)O2 in the presence of GSH and by 2 fold in the presence of GSSG, while dSp levels dropped to zero for both conditions. All data from dGuo, 8-oxodGuo and dSp quantification together with the analysis of residual GSH/GSSG content in each sample strongly suggest that glutathione modifies the mechanism of dGuo oxidation by (1)O2 by disfavoring the pathway of dSp formation.


Asunto(s)
Desoxiguanosina/metabolismo , Glutatión/metabolismo , Oxígeno Singlete/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Glutatión/química , Disulfuro de Glutatión/química , Disulfuro de Glutatión/metabolismo , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Técnicas In Vitro , Modelos Químicos , Oxidación-Reducción , Oxígeno Singlete/química , Compuestos de Espiro/química , Compuestos de Espiro/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-24940682

RESUMEN

Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides into the corresponding 5'-monophosphate deoxyribonucleosides to supply the cell with nucleic acid precursors. In mitochondrial fractions of the model plant Arabidopsis thaliana, we detected deoxyadenosine and thymidine kinase activities, while the cytosol fraction contained six-fold lower activity and chloroplasts contained no measurable activities. In addition, a mitochondrial fraction isolated from the potato Solanum tuberosum contained thymidine kinase and deoxyadenosine kinase activities. We conclude that an active salvage of deoxyribonucleosides in plants takes place in their mitochondria. In general, the observed localization of the plant dNK activities in the mitochondrion suggests that plants have a different organization of the deoxyribonucleoside salvage compared to mammals.


Asunto(s)
Desoxirribonucleósidos/metabolismo , Mitocondrias/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/metabolismo , ADN de Plantas/metabolismo , Espacio Intracelular/enzimología , Mitocondrias/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transporte de Proteínas , Solanum tuberosum/citología , Solanum tuberosum/enzimología , Solanum tuberosum/metabolismo , Timidina Quinasa/metabolismo
14.
Chemistry ; 20(24): 7249-53, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24839110

RESUMEN

Deoxyribonucleoside-modified squaraines were synthesized by Sonogashira coupling reactions using an unsymmetrical, terminal alkynylated benzothiazolium squaraine dye. These non-natural nucleosides exhibited fluorescent 'turn-on' properties in viscous conditions with an enhancement of >300-fold. The viscosity-dependent fluorescence enhancement was attributed to a combination of hampering both molecular aggregation and intramolecular bond rotation of the squaraine probe. Fluorescence microscopy allowed visualization of highly viscous regions during various stages of cellular mitosis.


Asunto(s)
Ciclobutanos/química , Fenoles/química , Desoxirribonucleósidos , Colorantes Fluorescentes , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA