Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 20(1): 199, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36127662

RESUMEN

BACKGROUND: In recent years, Precambrian lifeforms have generated an ever-increasing interest because they revealed a rich eukaryotic diversity prior to the Cambrian explosion of modern animals. Among them, macroalgae are known to be a conspicuous component of Neoproterozoic ecosystems, and chlorophytes in particular are already documented in the Tonian, when they were so far expected to originate. However, like for other major eukaryotic lineages, and despite predictions of molecular clock analyses placing roots of these lineages well into the Neoproterozoic, a taxonomic constraint on Precambrian green algae has remained difficult. RESULTS: Here, we present an exceptionally preserved spherical, coenocytic unicellular alga from the latest Ediacaran Dengying Formation of South China (> ca. 541 Ma), known from both external and internal morphology, fully tridimensional and in great detail. Tomographic X-ray and electronic microscopy revealed a characteristic medulla made of intertwined siphons and tightly packed peripheral utricles, suggesting these fossils belong to the Bryopsidales genus Codium. However, its distinctly smaller size compared to extant species leads us to create Protocodium sinense gen. et sp. nov. and a phylomorphospace investigation points to a possible stem group affinity. CONCLUSIONS: Our finding has several important implications. First, Protocodium allows for a more precise calibration of Archaeplastida and directly confirms that a group as derived as Ulvophyceae was already well diversified in various ecosystems prior to the Cambrian explosion. Details of tridimensional morphology also invite a reassessment of the identification of other Ediacaran algae, such as Chuaria, to better discriminate mono-versus multicellularity, and suggest unicellular Codium-like morphotypes could be much older and widespread. More broadly, Protocodium provides insights into the early diversification of the plant kingdom, the composition of Precambrian ecosystems, and the extreme longevity of certain eukaryotic plans of organization.


Asunto(s)
Chlorophyta , Ecosistema , Animales , China , Chlorophyta/genética , Células Eucariotas , Fósiles
2.
Sci Bull (Beijing) ; 63(21): 1431-1438, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36658983

RESUMEN

The Doushantuo negative carbon isotope excursion (DOUNCE) is the largest known marine inorganic carbon isotope anomaly. The origin of this pronounced negative excursion is still an enigmatic issue that attracts geologists. Time constraints on the excursion are the critical information that would provide insight into its genesis. In previous decades, the timing of its termination has been constrained by the widely cited zircon U-Pb age of 550.5 ±â€¯0.8 Ma for the tuff at the top of the Miaohe Member at the Jiuqunao section in the Yangtze Gorges area, South China. However, results of recent studies indicate that the reliability of this time constraint needs to be re-evaluated. Here, a geochronological study was carried out using two K-bentonites from Fanglong in South China. A K-bentonite in the lower Dengying Formation yielded a U-Pb age of 557 ±â€¯3 Ma, while a K-bentonite in the basal Liuchapo Formation yielded an age of 550 ±â€¯3 Ma. Based on regional correlations between the Ediacaran successions in South China, the age (557 ±â€¯3 Ma) for the K-bentonite in the lower Dengying Formation may serve as a second critical timing constraint for the ending of the DOUNCE. Combined with available estimates of the DOUNCE duration, our new data indicate that the DOUNCE has a maximum onset age ∼570 Ma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA