Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(7): 2459-2474, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501941

RESUMEN

Tilletia horrida is an important soilborne fungal pathogen that causes rice kernel smut worldwide. We found a glycoside hydrolase family 128 protein, designated ThGhd_7, caused cell death in Nicotiana benthamiana leaves. The predicted signal peptide (SP) of ThGhd_7 targets it for secretion. However, loss of the SP did not affect its ability to induce cell death. The 23-201 amino acid sequence of ThGhd_7 was sufficient to trigger cell death in N. benthamiana. ThGhd_7 expression was induced and upregulated during T. horrida infection. ThGhd_7 localised to both the cytoplasm and nucleus of plant cells, and nuclear localisation was required to induce cell death. The ability of ThGhd_7 to trigger cell death in N. benthamiana depends on RAR1 (required for Mla12 resistance), SGT1 (suppressor of G2 allele of Skp1), and BAK1/SERK3 (somatic embryogenesis receptor-like kinase 3). Heterologous overexpression of ThGhd_7 in rice reduced reactive oxygen species (ROS) production and enhanced susceptibility to T. horrida. Further research revealed that ThGhd_7 interacted with and destabilised OsSGT1, which is required for ROS production and is a positive regulator of rice resistance to T. horrida. Taken together, these findings suggest that T. horrida employs ThGhd_7 to disrupt ROS production and thereby promote infection.


Asunto(s)
Nicotiana , Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Oryza/genética , Oryza/microbiología , Oryza/inmunología , Oryza/metabolismo , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulación de la Expresión Génica de las Plantas , Muerte Celular , Basidiomycota/fisiología , Plantas Modificadas Genéticamente , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
2.
Plant Cell Environ ; 47(2): 651-663, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37899711

RESUMEN

LncRNAs have gained increasing attention owing to their important regulatory roles on growth and stress responses of plants. However, the mechanisms underlying the functions of lncRNAs in fruit-pathogen interaction are still largely unknown. In this study, a total of 273 lncRNAs responding to Botrytis cinerea infection were identified in tomato fruit, among which a higher percentage of antisense lncRNAs were targeted to the genes enriched in hydrolase activity. To ascertain the roles of these lncRNAs, seven hydrolase-related transcripts were transiently knocked-down by virus-induced gene silencing. Silencing of lncRNACXE20 reduced the expression level of a carboxylesterase gene, further enhancing the resistance of tomato to B. cinerea. In contrast, silencing of lncRNACHI, lncRNAMMP, lncRNASBT1.9 and lncRNAPME1.9 impaired the resistance to B. cinerea, respectively. Further RT-qPCR assay and enzymatic activity detection displayed that the attenuated resistance of lncRNAMMP and lncRNASBT1.9-silenced plants was associated with the inhibition on the expression of JA-related genes, while the decreased resistance of lncRNACHI-silenced plants resulted in reduced chitinase activity. Collectively, these results may provide references for deciphering the mechanisms underlying specific lncRNAs to interfere with B. cinerea infection by regulating the expression of defence-related genes or affecting hydrolase activity.


Asunto(s)
ARN Largo no Codificante , Solanum lycopersicum , Solanum lycopersicum/genética , ARN Largo no Codificante/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Botrytis/fisiología , Hidrolasas/metabolismo , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
3.
J Exp Bot ; 75(7): 2064-2083, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38011680

RESUMEN

Plant diseases tend to be more serious under conditions of high-temperature/high-humidity (HTHH) than under moderate conditions, and hence disease resistance under HTHH is an important determinant for plant survival. However, how plants cope with diseases under HTHH remains poorly understood. In this study, we used the pathosystem consisting of pepper (Capsicum annuum) and Ralstonia solanacearum (bacterial wilt) as a model to examine the functions of the protein mildew resistance locus O 1 (CaMLO1) and U-box domain-containing protein 21 (CaPUB21) under conditions of 80% humidity and either 28 °C or 37 °C. Expression profiling, loss- and gain-of-function assays involving virus-induced gene-silencing and overexpression in pepper plants, and protein-protein interaction assays were conducted, and the results showed that CaMLO1 acted negatively in pepper immunity against R. solanacearum at 28 °C but positively at 37 °C. In contrast, CaPUB21 acted positively in immunity at 28 °C but negatively at 37 °C. Importantly, CaPUB21 interacted with CaMLO1 under all of the tested conditions, but only the interaction in response to R. solanacearum at 37 °C or to exposure to 37 °C alone led to CaMLO1 degradation, thereby turning off defence responses against R. solanacearum at 37 °C and under high-temperature stress to conserve resources. Thus, we show that CaMLO1 and CaPUB21 interact with each other and function distinctly in pepper immunity against R. solanacearum in an environment-dependent manner.


Asunto(s)
Capsicum , Ralstonia solanacearum , Termotolerancia , Inmunidad de la Planta/fisiología , Temperatura , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/fisiología , Capsicum/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Biotechnol J ; 21(11): 2291-2306, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37466912

RESUMEN

Fruit ripening and disease resistance are two essential biological processes for quality formation and maintenance. DNA methylation, in the form of 5-methylcytosine (5mC), has been elucidated to modulate fruit ripening, but its role in regulating fruit disease resistance remains poorly understood. In this study, we show that mutation of SlDML2, the DNA demethylase gene essential for fruit ripening, affects multiple developmental processes of tomato besides fruit ripening, including seed germination, leaf length and width and flower branching. Intriguingly, loss of SlDML2 function decreased the resistance of tomato fruits against the necrotrophic fungal pathogen Botrytis cinerea. Comparative transcriptomic analysis revealed an obvious transcriptome reprogramming caused by SlDML2 mutation during B. cinerea invasion. Among the thousands of differentially expressed genes, SlßCA3 encoding a ß-carbonic anhydrase and SlFAD3 encoding a ω-3 fatty acid desaturase were demonstrated to be transcriptionally activated by SlDML2-mediated DNA demethylation and positively regulate tomato resistance to B. cinerea probably in the same genetic pathway with SlDML2. We further show that the pericarp tissue surrounding B. cinerea infection exhibited a delay in ripening with singnificant decrease in expression of ripening genes that are targeted by SlDML2 and increase in expression of SlßCA3 and SlFAD3. Taken together, our results uncover an essential layer of gene regulation mediated by DNA methylation upon B. cinerea infection and raise the possible that the DNA demethylase gene SlDML2, as a multifunctional gene, participates in modulating the trade-off between fruit ripening and disease resistance.


Asunto(s)
Proteínas de Plantas , Solanum lycopersicum , Resistencia a la Enfermedad/genética , ADN/metabolismo , Metilación de ADN/genética , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética
5.
Mol Plant Pathol ; 24(11): 1359-1369, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37404045

RESUMEN

Our previous study identified an evolutionarily conserved C4HC3-type E3 ligase, named microtubule-associated E3 ligase (MEL), that regulates broad-spectrum plant resistance against viral, fungal and bacterial pathogens in multiple plant species by mediating serine hydroxymethyltransferase (SHMT1) degradation via the 26S proteasome pathway. In the present study, we found that NS3 protein encoded by rice stripe virus could competitively bind to the MEL substrate recognition site, thereby inhibiting MEL interacting with and ubiquitinating SHMT1. This, in turn, leads to the accumulation of SHMT1 and the repression of downstream plant defence responses, including reactive oxygen species accumulation, mitogen-activated protein kinase pathway activation, and the up-regulation of disease-related gene expression. Our findings shed light on the ongoing arms race between pathogens and demonstrate how a plant virus can counteract the plant defence response.


Asunto(s)
Oryza , Virus de Plantas , Tenuivirus , Tenuivirus/genética , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virus de Plantas/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología
6.
3 Biotech ; 13(6): 179, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37193326

RESUMEN

The charcoal-rot caused by Macrophomina phaseolina is one of the major disease in many economically important crop plants including tomato. The molecular responses of the host plant against the M. phaseolina are poorly stated. In the present study, for the first time the molecular insight of tomato-Macrophomina interaction and Sargassum tenerrimum extract (SE) toward managing disease through RNA-seq approach is established. A total of 449 million high-quality reads (HQRs) were obtained and aligned to the tomato genome with an average mapping of 89.12%. The differentially expressed genes (DEGs) regulated across the different treatment pairs were identified. Several DEGs, such as receptor-like kinases (SlRLKs), transcription factors including SlWRKY70, SlGRAS4, SlERF4, SlERF25, pathogenesis related-1 (SlPR1), SlPR2, endochitinase and peroxidase were significantly up-regulated in SE + Macrophomina treated sample as compared to only Macrophomina treated sample. The crosstalk between salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) was a key factor to regulate resistance in tomato during SE + Macrophomina treatment. The KEGG pathway including plant hormone signal transduction, plant-pathogen interaction and mitogen-activated protein kinase (MAPK) signaling pathway were significantly enriched. The RNA-seq data were validated through qPCR using 12 disease-responsive genes and correlated significantly with R2 = 0.73. The present study suggests that SE act as an elicitor molecule and activate the defence-related pathways similar to PAMP-triggered immunity in tomato. The jasmonic acid (JA) mediated signaling pathway was identified as a key factor to induce resistance in tomato against Macrophomina infection. The present study depicts the beneficial effects of SE by regulating molecular mechanism towards defence responses in tomato against Macrophomina infection. The application of SE brings out new prospects to induce disease tolerance in the agricultural crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03565-4.

7.
J Exp Bot ; 74(15): 4707-4720, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37201950

RESUMEN

Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.


Asunto(s)
Transcriptoma , Triticum , Triticum/genética , Triticum/microbiología , Rayos X , Susceptibilidad a Enfermedades , Microscopía Fluorescente , Enfermedades de las Plantas/microbiología
8.
J Exp Bot ; 74(10): 3104-3121, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36869735

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are a large family of plasma membrane-bound receptors ubiquitous in higher plants. However, despite their prominence, their biological roles have remained largely elusive so far. In this study we report the characterization of an Arabidopsis mutant named crk10-A397T in which alanine 397 has been replaced by a threonine in the αC helix of the kinase domain of CRK10, known to be a crucial regulatory module in mammalian kinases. The crk10-A397T mutant is a dwarf that displays collapsed xylem vessels in the root and hypocotyl, whereas the vasculature of the inflorescence develops normally. In situ phosphorylation assays with His-tagged wild type and crk10-A397T versions of the CRK10 kinase domain revealed that both alleles are active kinases capable of autophosphorylation, with the newly introduced threonine acting as an additional phosphorylation site in crk10-A397T. Transcriptomic analysis of wild type and crk10-A397T mutant hypocotyls revealed that biotic and abiotic stress-responsive genes are constitutively up-regulated in the mutant, and a root-infection assay with the vascular pathogen Fusarium oxysporum demonstrated that the mutant has enhanced resistance to this pathogen compared with wild type plants. Taken together our results suggest that crk10-A397T is a gain-of-function allele of CRK10, the first such mutant to have been identified for a CRK in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación Puntual , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Mol Plant Pathol ; 24(6): 560-569, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36916884

RESUMEN

The bean bug (Riptortus pedestris), one of the most important pests of soybean, causes staygreen syndrome, delaying plant maturation and affecting pod development, resulting in severe crop yield loss. However, little is known about the underlying mechanism of this pest. In this study, we found that a salivary secretory protein, Rp614, induced cell death in nonhost Nicotiana benthamiana leaves. NbSGT1 and NbNDR1 are involved in Rp614-induced cell death. Tissue specificity analysis showed that Rp614 is mainly present in salivary glands and is highly induced during pest feeding. RNA interference experiments showed that staygreen syndrome caused by R. pedestris was significantly attenuated when Rp614 was silenced. Together, our results indicate that Rp614 plays an essential role in R. pedestris infestation and provide a promising RNA interference target for pest control.


Asunto(s)
Glycine max , Heterópteros , Animales , Glycine max/genética , Heterópteros/genética
10.
Pest Manag Sci ; 79(5): 1944-1962, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36655853

RESUMEN

BACKGROUND: The continuous use of the herbicides contributes to the emergence of the resistant populations of numerous weed species that are tolerant to multiple herbicides with different modes of action (multiple resistance) which is provided by non-target-site resistance mechanisms. In this study, we addressed the question of rapid acquisition of herbicide resistance to pinoxaden (acetyl CoA carboxylase inhibitor) in Apera spica-venti, which endangers winter cereal crops and has high adaptation capabilities to inhabit many rural locations. To this end, de novo transcriptome of Apera spica-venti was assembled and RNA-sequencing analysis of plants resistant and susceptible to pinoxaden treated with this herbicide was performed. RESULTS: The obtained data showed that the prime candidate genes responsible for herbicide resistance were those encoding 3-ketoacyl-CoA synthase 12-like, UDP-glycosyltransferases (UGT) including UGT75K6, UGT75E2, UGT83A1-like, and glutathione S-transferases (GSTs) such as GSTU1 and GSTU6. Also, such highly accelerated herbicide resistance emergence may result from the enhanced constitutive expression of a wide range of genes involved in detoxification already before herbicide treatment and may also influence response to biotic stresses, which was assumed by the detection of expression changes in genes encoding defence-related proteins, including receptor kinase-like Xa21. Moreover, alterations in the expression of genes associated with methylation in non-treated herbicide-resistant populations were identified. CONCLUSION: The obtained results indicated genes that may be involved in herbicide resistance. Moreover, they provide valuable insight into the possible effect of resistance on the weed interaction with the other stresses by indicating pathways associated with both abiotic and biotic stresses. © 2023 Society of Chemical Industry.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Poaceae/genética , Perfilación de la Expresión Génica , Grano Comestible/metabolismo , Resistencia a los Herbicidas/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas de Plantas/genética
11.
Parasite ; 30: 1, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36656045

RESUMEN

Terrestrial gastropods are hosts of a wide variety of metazoan parasites and can respond to parasite exposure in various ways. One of these defence mechanisms, the ability to trap parasites in the host shell, was previously thought to apply only against nematodes. During a field survey along an urbanisation gradient, we found that the shell of Cornu aspersum and Cepaea nemoralis can contain encapsulated trematode cercariae, with prevalences of 7% and 1%, respectively over the entire sample, and up to 47% at the local population level. To our knowledge, this is the first case study unambiguously showing that land snails can trap non-nematode parasites in their shell at non-negligible prevalences. Shell-encapsulation could be a more general defence mechanism than previously described, and more studies are needed to understand its importance and variability.


Title: Les gastéropodes terrestres peuvent piéger les cercaires de trématodes dans leur coquille : l'encapsulation comme réponse générale contre les parasites ? Abstract: Les gastéropodes terrestres sont les hôtes d'une grande variété de métazoaires parasites, et peuvent répondre de plusieurs façons à l'exposition parasitaire. L'un de ces mécanismes de défense, la capacité à piéger le parasite dans la coquille, semblait ne concerner que les nématodes. Lors d'un suivi de terrain le long d'un gradient d'urbanisation, nous avons observé que la coquille de Cornu aspersum et de Cepaea nemoralis pouvait contenir des cercaires de trématodes encapsulées, à des prévalences respectives de 7 % et 1 % sur l'ensemble de l'échantillon, et pouvant atteindre 47 % au niveau d'une population locale. À notre connaissance, ceci est la première étude montrant sans ambiguïté que les escargots terrestres peuvent piéger de façon significative des parasites autres que les nématodes dans leur coquille. L'encapsulation des parasites dans la coquille pourrait donc être un mécanisme de défense plus général que précédemment décrit, plus d'études étant nécessaires pour comprendre son importance et sa variabilité.


Asunto(s)
Parásitos , Trematodos , Animales , Humanos , Trematodos/fisiología , Cercarias , Caracoles/parasitología
12.
Plant Biol (Stuttg) ; 25(1): 119-130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36177724

RESUMEN

In common root and crown rot (CRR), Bipolaris sorokiniana (Sace.) is one of the important in wheat, causing considerable yield losses globally. Sources of resistance can provide a feasible and effective method of control for plant disease management. However, knowledge on mechanisms of resistance is scarce. We screened 33 wheat genotypes against B. sorokiniana under greenhouse and field conditions. In addition, real-time quantitative PCR (qPCR) analysis using ten novel candidate gene markers, Cre3, EDS1, LTP5, PGIP, PR-1, PIEP1, TLP, UGT, Stb6 and PFT, was conducted on leaves and roots, along with changes in activity of antioxidant enzymes, peroxidase, catalase, ß-1,3-glucanase, and phenolic content for their involvement in disease impact mechanisms. Lowest disease severity was in 'Alvand', followed by 'Baharan' and 'Bam' as resistant genotypes. Quantitative gene expression showed that, although the candidate defence genes were upregulated 1.24- to 3.5-fold in wheat roots and leaves inoculated with B. sorokiniana, they were highly regulated in resistant varieties 'Alvand', 'Mehregan' and 'Bam'. Cre3, a resistance gene to cereal cyst nematode Heterodera filipjevi, was regulated in cultivars resistant to B. sorokiniana. Similar results were obtained for Stb6, a gene resistant to Septoria tritici blotch, EDS1 resistant to powdery mildew, Blumeria graminis, and the genes PR-1 and UGT resistant to leaf rust, Puccinia triticina. Antioxidant enzyme activity also showed the highest increases in resistant genotypes. In conclusion, the T. aestivum-B. sorokiniana interaction in resistant wheat cultivars uses defence-related genes and enzymes that protect wheat towards sustainable development. Further such studies will shed light on simultaneous resistance to other diseases in wheat cultivars.


Asunto(s)
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Antioxidantes/metabolismo , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
13.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430503

RESUMEN

Silicon (Si) is known to stimulate plant resistance against different phytopathogens, i.e., bacteria, fungi, and nematodes. It is an efficient plant growth regulator under various biotic and abiotic stresses. Silicon-containing compounds, including silicon dioxide, SiO2 nanoparticles (NPs), nano-chelated silicon fertilizer (NCSF), sodium siliconate, and sodium metasilicate, are effective in damaging various nematodes that reduce their reproduction, galling, and disease severity. The defence mechanisms in plant-nematodes interaction may involve a physical barrier, plant defence-associated enzyme activity, synthesis of antimicrobial compounds, and transcriptional regulation of defence-related genes. In the current review, we focused on silicon and its compounds in controlling plant nematodes and regulating different defence mechanisms involved in plant-nematodes interaction. Furthermore, the review aims to evaluate the potential role of Si application in improving plant resistance against nematodes and highlight its need for efficient plant-nematodes disease management.


Asunto(s)
Nematodos , Tylenchida , Animales , Dióxido de Silicio , Inmunidad de la Planta , Plantas
14.
BMC Plant Biol ; 22(1): 464, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36171555

RESUMEN

BACKGROUND: Agarwood is a valuable Chinese medicinal herb and spice that is produced from wounded Aquilaria spp., is widely used in Southeast Asia and is highly traded on the market. The lack of highly responsive Aquilaria lines has seriously restricted agarwood yield and the development of its industry. In this article, a comparative transcriptome analysis was carried out between ordinary A. sinensis and Chi-Nan germplasm, which is a kind of A. sinensis tree with high agarwood-producing capacity in response to wounding stress, to elucidate the molecular mechanism underlying wounding stress in different A. sinensis germplasm resources and to help identify and breed high agarwood-producing strains. RESULTS: A total of 2427 and 1153 differentially expressed genes (DEGs) were detected in wounded ordinary A. sinensis and Chi-Nan germplasm compared with the control groups, respectively. KEGG enrichment analysis revealed that genes participating in starch metabolism, secondary metabolism and plant hormone signal transduction might play major roles in the early regulation of wound stress. 86 DEGs related to oxygen metabolism, JA pathway and sesquiterpene biosynthesis were identified. The majority of the expression of these genes was differentially induced between two germplasm resources under wounding stress. 13 candidate genes related to defence and sesquiterpene biosynthesis were obtained by WGCNA. Furthermore, the expression pattern of genes were verified by qRT-PCR. The candidate genes expression levels were higher in Chi-Nan germplasm than that in ordinary A. sinensis during early stage of wounding stress, which may play important roles in regulating high agarwood-producing capacity in Chi-Nan germplasm. CONCLUSIONS: Compared with A. sinensis, Chi-Nan germplasm invoked different biological processes in response to wounding stress. The genes related to defence signals and sesquiterepene biosynthesis pathway were induced to expression differentially between two germplasm resources. A total of 13 candidate genes were identified, which may correlate with high agarwood-producting capacity in Chi-Nan germplasm during the early stage of wounding stress. These genes will contribute to the development of functional molecular markers and the rapid breeding highly of responsive Aquilaria lines.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Perfilación de la Expresión Génica , Oxígeno/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Sesquiterpenos/metabolismo , Almidón/metabolismo , Thymelaeaceae/genética , Thymelaeaceae/metabolismo
15.
Mol Plant Pathol ; 23(11): 1658-1670, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35957505

RESUMEN

Pyricularia oryzae and Pyricularia grisea are pathogens that cause blast disease in various monocots. It has been reported that P. oryzae infects the leaves and roots of rice via different mechanisms. However, it is unclear to what extent the tissue types affect the host specificities of P. oryzae and P. grisea. Here, we evaluated the tissue-specific infection strategies of P. oryzae and P. grisea in various gramineous plants. Generally, mycelial plug inoculation caused root browning but the degree of browning did not simply follow the disease index on leaves. Interestingly, the Triticum and Digitaria pathotypes caused strong root growth inhibition in rice, wheat, and barley. Moreover, the Digitaria pathotype inhibited root branching only in rice. Culture filtrate reproduced these inhibitory effects on root, suggesting that some secreted molecules are responsible for the inhibitions. Observation of root sections revealed that most of the infection hyphae penetrated intercellular spaces and further extended into root cells, regardless of pathotype and host plant. The infection hyphae of Digitaria and Triticum pathotypes tended to localize in the outer layer of rice roots, but not in those of wheat and barley roots. The infection hyphae of the Oryza pathotype were distributed in both the intercellular and intracellular spaces of rice root cells. Pathogenesis-related genes and reactive oxygen species accumulation were induced after root inoculation with all combinations. These results suggest that resistance reactions were induced in the roots of gramineous plants against the infection with Pyricularia isolates but failed to prevent fungal invasion.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Especificidad del Huésped , Magnaporthe/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas , Pyricularia grisea , Especies Reactivas de Oxígeno , Triticum
16.
Plants (Basel) ; 11(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015426

RESUMEN

The involvement of cytokinins (CK) in biotic stresses has been recognized, while knowledge regarding the effects of CK deficiency on plant response against pathogens is less abundant. Thus, the purpose of this study was to reveal the effects of CK deficiency on proteomics and metabolomic responses of flg22-triggered immunity. We conducted a series of histochemical assays to investigate the activity of the downstream pathways caused by flg22, such as accumulation of ROS, induction of defence genes, and callose deposition, that occurred in Arabidopsis thaliana transgenic lines overexpressing the Hordeum vulgare CKX2 gene (HvCKX2), which are therefore CK-deficient. We also used GC and LC-MS-based technology to quantify variations in stress hormone levels and metabolomic and proteomic responses in flg22-treated HvCKX2 and wild-type Arabidopsis plants. We found that CK deficiency alters the flg22-triggered plant defence response, especially through induction of callose deposition, upregulation of defence response-related proteins, increased amino acid biosynthesis, and regulation of plant photosynthesis. We also indicated that JA might be an important contributor to immune response in plants deficient in CKs. The present study offers new evidence on the fundamental role of endogenous CK in the response to pathogens, as well as the possibility of altering plant biotic tolerance by manipulating CK pools.

17.
Mol Plant Pathol ; 23(8): 1226-1238, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567423

RESUMEN

Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Empalme Alternativo/genética , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas , Isoformas de Proteínas/metabolismo , Estrés Fisiológico/genética
18.
BMC Genomics ; 23(1): 278, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392815

RESUMEN

BACKGROUND: Rice sheath blight, caused by Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris), is one of the most severe diseases in rice (Oryza sativa L.) worldwide. Studies on resistance genes and resistance mechanisms of rice sheath blight have mainly focused on indica rice. Rice sheath blight is a growing threat to rice production with the increasing planting area of japonica rice in Northeast China, and it is therefore essential to explore the mechanism of sheath blight resistance in this rice subspecies. RESULTS: In this study, RNA-seq technology was used to analyse the gene expression changes of leaf sheath at 12, 24, 36, 48, and 72 h after inoculation of the resistant cultivar 'Shennong 9819' and susceptible cultivar 'Koshihikari' with R. solani. In the early stage of R. solani infection of rice leaf sheaths, the number of differentially expressed genes (DEGs) in the inoculated leaf sheaths of resistant and susceptible cultivars showed different regularity. After inoculation, the number of DEGs in the resistant cultivar fluctuated, while the number of DEGs in the susceptible cultivar increased first and then decreased. In addition, the number of DEGs in the susceptible cultivar was always higher than that in the resistant cultivar. After inoculation with R. solani, the overall transcriptome changes corresponding to multiple biological processes, molecular functions, and cell components were observed in both resistant and susceptible cultivars. These included metabolic process, stimulus response, biological regulation, catalytic activity, binding and membrane, and they were differentially regulated. The phenylalanine metabolic pathway; tropane, piperidine, and pyridine alkaloid biosynthesis pathways; and plant hormone signal transduction were significantly enriched in the early stage of inoculation of the resistant cultivar Shennong 9819, but not in the susceptible cultivar Koshihikari. This indicates that the response of the resistant cultivar Shennong 9819 to pathogen stress was faster than that of the susceptible cultivar. The expression of plant defense response marker PR1b gene, transcription factor OsWRKY30 and OsPAL1 and OsPAL6 genes that induce plant resistance were upregulated in the resistant cultivar. These data suggest that in the early stage of rice infection by R. solani, there is a pathogen-induced defence system in resistant rice cultivars, involving the expression of PR genes, key transcription factors, PAL genes, and the enrichment of defence-related pathways. CONCLUSION: The transcriptome data revealed the molecular and biochemical differences between resistant and susceptible cultivars of rice after inoculation with R. solani, indicating that resistant cultivars have an immune response mechanism in the early stage of pathogen infection. Disease resistance is related to the overexpression of PR genes, key transcriptome factors, and PAL genes, which are potential targets for crop improvement.


Asunto(s)
Oryza , Oryza/metabolismo , Enfermedades de las Plantas/genética , Rhizoctonia/genética , Factores de Transcripción/metabolismo , Transcriptoma
19.
Front Fungal Biol ; 3: 1001143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746162

RESUMEN

As grapevines mature in California vineyards they accumulate chronic wood infections by the Ascomycete fungi that cause trunk diseases, including Botryosphaeria dieback (caused by Diplodia seriata and Neofusicoccum parvum) and Esca (caused by Phaeomoniella chlamydospora). It is thought that such mixed infections become localized to separate internal lesions/cankers of the permanent, woody structure of an individual vine, but nonetheless the fungi all colonize the same vascular system. In response to infection by one pathogen, the host may initiate systemic biochemical changes, which in turn may affect the extent of subsequent infections by other pathogens. To test this hypothesis, we measured changes in phenolic compounds in the wood and lesion lengths of the pathogens, during sequential co-inoculations with different or identical pair-wise sequences of infection by D. seriata, N. parvum, or P. chlamydospora. Prior fungal infections only affected the development of subsequent D. seriata infections. Effects of fungal infections on phenolic compounds were variable, yet initial infection by D. seriata was associated with significantly higher concentrations of most phenolic compounds distally, compared to all other initial inoculation treatments. It was hypothesized that pre-existing phenolic levels can slow initial lesion development of fungal trunk pathogens, especially for D. seriata, but over time the pathogens appeared to overcome or neutralize phenolic compounds and grow unimpeded. These results demonstrate that effects of one fungal trunk pathogen infection is generally unable to distally affect another long-term, albeit shifts in host phenolics and other plant defenses do occur.

20.
Front Plant Sci ; 12: 722810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630470

RESUMEN

Most flowering plants must defend themselves against herbivores for survival and attract pollinators for reproduction. Although traits involved in plant defence and pollinator attraction are often localised in leaves and flowers, respectively, they will show a diffuse evolution if they share the same molecular machinery and regulatory networks. We performed RNA-sequencing to characterise and compare transcriptomic changes involved in herbivory-induced defences and flower development, in tomato leaves and flowers, respectively. We found that both the herbivory-induced responses and flower development involved alterations in jasmonic acid signalling, suppression of primary metabolism and reprogramming of secondary metabolism. We identified 411 genes that were involved in both processes, a number significantly higher than expected by chance. Genetic manipulation of key regulators of induced defences also led to the expression changes in the same genes in both leaves and flowers. Targeted metabolomic analysis showed that among closely related tomato species, jasmonic acid and α-tomatine are correlated in flower buds and herbivory-induced leaves. These findings suggest that herbivory-induced responses and flower development share a common molecular machinery and likely have coevolved in nature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA