Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 347: 112201, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053515

RESUMEN

Phreatophytes play an important role in maintaining the ecological services in arid and semi-arid areas. Characterizing the interaction between groundwater and phreatophytes is critical for the land and water management in such areas. Therefore, the identification of key traits related to mitigating desertification in differently adapted T. aphylla populations was the focus. Fifteen naturally adapted populations of the prominent phreatophyte T. aphylla from diverse ecological regions of Punjab, Pakistan were selected. Key structural and functional modifications involved in ecological success and adaptations against heterogeneous environments for water conservation include widened metaxylem vessels in roots, enlarged brachy sclereids in stems/leaves, tissues succulence, and elevated organic osmolytes and antioxidants activity for osmoregulation and defense mechanism. Populations from hot and dry deserts (Dratio: 43.17-34.88) exhibited longer roots and fine-scaled leaves, along with enlarged vascular bundles and parenchyma cells in stems. Populations inhabiting saline deserts (Dratio: 38.59-33.29) displayed enhanced belowground biomass production, larger root cellular area, broadest phloem region in stems, and numerous large stomata in leaves. Hyper-arid populations (Dratio: 33.54-23.07) excelled in shoot biomass production, stem cellular area, epidermal thickness, pith region in stems, and lamina thickness in leaves. In conclusion, this research highlights T. aphylla as a vital model for comprehending plant resilience to environmental stresses, with implications for carbon sequestration and ecosystem restoration.


Asunto(s)
Clima Desértico , Tamaricaceae , Tamaricaceae/fisiología , Adaptación Fisiológica , Pakistán , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo
3.
Ann Bot ; 130(3): 367-382, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35468194

RESUMEN

BACKGROUND AND AIMS: Deep roots (i.e. >1 m depth) are important for crops to access water when the topsoil is dry. Root anatomy and hydraulic conductance play important roles in the uptake of soil water, particularly water located deep in the soil. We investigated whether root and xylem anatomy vary as a function of root type, order and length, or with soil depth in roots of two deep-rooted perennial crops: intermediate wheatgrass [Thinopyrum intermedium (Kernza®)] and alfalfa (Medicago sativa). We linked the expression of these anatomical traits to the plants' capacity to take up water from deep soil layers. METHODS: Using laser ablation tomography, we compared the roots of the two crops for cortical area, number and size of metaxylem vessels, and their estimated root axial hydraulic conductance (ERAHCe). The deepest roots investigated were located at soil depths of 2.25 and at 3.5 m in the field and in rhizoboxes, respectively. Anatomical differences were characterized along 1-m-long individual roots, among root types and orders, as well as between environmental conditions. KEY RESULTS: For both crops, a decrease in the number and diameter, or both, of metaxylem vessels along individual root segments and with soil depth in the field resulted in a decrease in ERAHCe. Alfalfa, with a greater number of metaxylem vessels per root throughout the soil profile and, on average, a 4-fold greater ERAHCe, took up more water from the deep soil layers than intermediate wheatgrass. Root anatomical traits were significantly different across root types, classes and growth conditions. CONCLUSIONS: Root anatomical traits are important tools for the selection of crops with enhanced exploitation of deep soil water. The development and breeding of perennial crops for improved subsoil exploitation will be aided by greater understanding of root phenotypes linked to deep root growth and activity.


Asunto(s)
Medicago sativa , Suelo , Productos Agrícolas/metabolismo , Medicago sativa/metabolismo , Raíces de Plantas , Agua/metabolismo , Xilema/metabolismo
4.
Plant Methods ; 16: 84, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528551

RESUMEN

BACKGROUND: Ingrowth-core method is a useful tool to determine fine root growth of standing crops by inserting root-free soil in mesh-bags for certain period of time. However, the root density observed by the method does not directly explain the nutrient uptake potential of crop plants as it varies over soil depth and incubation time. We have inserted an access-tube up to 4.2 m of soil depth with openings directly under crop plants, through which ingrowth-cores containing labelled soil with nutrient tracers were installed, called core-labelling technique (CLT). The main advantage of CLT would be its capacity to determine both root density and root activity from the same crop plants in deep soil layers. We tested the validity of the new method using a model crop species, alfalfa (Medicago sativa) against three depth-levels (1.0, 2.5 and 4.2 m), three sampling spots with varying distance (0-0.36, 0.36-0.72 and > 5 m from core-labelled spot), two sampling times (week 4 and 8), and two plant parts (young and old leaves) under two field experiments (spring and autumn). RESULTS: Using CLT, we were able to observe both deep root growth and root activity up to 4.2 m of soil depth. Tracer concentrations revealed that there was no sign of tracer-leakage to adjacent areas which is considered to be advantageous over the generic tracer-injection. Root activity increased with longer incubation period and tracer concentrations were higher in younger leaves only for anionic tracers. CONCLUSIONS: Our results indicate that CLT can lead to a comprehensive deep root study aiming at measuring both deep root growth and root activity from the same plants. Once produced and installed, the access-tubes and ingrowth-cores can be used for a long-term period, which reduces the workload and cost for the research. Therefore, CLT has a wide range of potential applications to the research involving roots in deep soil layers, which requires further confirmation by future experiments.

6.
Ann Bot ; 124(4): 605-616, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30698652

RESUMEN

BACKGROUND AND AIMS: Giant reed (Arundo donax L.) is a deep-rooted crop that can survive prolonged dry periods probably as a result of its capacity to uptake water from below ground, but specific information on the functioning of deep/shallow roots is missing. The objective of this study was to understand the dynamic interrelationships of root water acquisition, canopy water conservation and abscisic acid (ABA) signals from both shallow and deep roots. METHODS: In transparent split top-bottom rhizotron systems (1-m-high columns), where hydraulically isolated and independently watered layers were created with the aid of calibrated soil moisture sensors, water uptake trends were monitored. Rooting patterns were traced on the walls of the rhizotrons. Leaf gas exchange was determined using a portable infrared gas analyser. Leaf and root ABA concentrations were monitored. KEY RESULTS: Under well-watered conditions, water uptake from both upper and deeper soil layers was similar. Water uptake from deeper soil layers increased gradually by up to 2.2-fold when drought stress was imposed to upper layers compared to the control conditions. Despite the significant increase in water uptake from deeper layers, surface root length density of drought-treated plants remained unchanged, suggesting increased root water uptake efficiency by these roots. However, these adjustments were not sufficient to sustain photosynthesis and therefore biomass accumulation, which was reduced by 42 %. The ABA content in shallower drought-treated roots increased 2.6-fold. This increase closely and positively correlated with foliar ABA concentration, increased intrinsic water use efficiency and leaf water potential (LWP). CONCLUSIONS: Giant reed is able to change its water sources depending on water availability and to maximize water uptake efficiency to satisfy canopy evapotranspirative demands. The regulation of deep root functioning and distribution, adjustment of canopy size, and root/foliar synthesized ABA play a central role in controlling LWP and leaf transpiration efficiency.


Asunto(s)
Ácido Abscísico , Suelo , Sequías , Hojas de la Planta , Raíces de Plantas , Transpiración de Plantas , Agua
7.
Front Plant Sci ; 8: 1314, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798764

RESUMEN

Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

8.
Front Plant Sci ; 8: 1194, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28791029

RESUMEN

Despite their importance for water uptake and transport, the xylem anatomical and hydraulic properties of tree roots have only rarely been studied in the field. We measured mean vessel diameter (D), vessel density (VD), relative vessel lumen area (lumen area per xylem area) and derived potential hydraulic conductivity (Kp) in the xylem of 197 fine- to medium-diameter roots (1-10 mm) in the topsoil and subsoil (0-200 cm) of a mature European beech forest on sandy soil for examining the influence of root diameter and soil depth on xylem anatomical and derived hydraulic traits. All anatomical and functional traits showed strong dependence on root diameter and thus root age but no significant relation to soil depth. Averaged over topsoil and deep soil and variable flow path lengths in the roots, D increased linearly with root diameter from ∼50 µm in the smallest diameter class (1-2 mm) to ∼70 µm in 6-7 mm roots (corresponding to a mean root age of ∼12 years), but remained invariant in roots >7 mm. D never exceeded ∼82 µm in the 1-10 mm roots, probably in order to control the risk of frost- or drought-induced cavitation. This pattern was overlain by a high variability in xylem anatomy among similar-sized roots with Kp showing a higher variance component within than between root diameter classes. With 8% of the roots exceeding average Kp in their diameter class by 50-700%, we obtained evidence of the existence of 'high-conductivity roots' indicating functional differentiation among similar-sized roots. We conclude that the hydraulic properties of small to medium diameter roots of beech are mainly determined by root age, rendering root diameter a suitable predictor of hydraulic functioning, while soil depth - without referring to path length - had a negligible effect.

9.
Field Crops Res ; 201: 146-161, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28163361

RESUMEN

Chickpea, the second most important legume crop, suffers major yield losses by terminal drought stress (DS). Stronger root system is known to enhance drought yields but this understanding remains controversial. To understand precisely the root traits contribution towards yield, 12 chickpea genotypes with well-known drought response were field evaluated under drought and optimal irrigation. Root traits, such as root length density (RLD), total root dry weight (RDW), deep root dry weight (deep RDW) and root:shoot ratio (RSR), were measured periodically by soil coring up to 1.2 m soil depth across drought treatments. Large variations were observed for RLD, RDW, deep RDW and RSR in both the drought treatments. DS increased RLD below 30 cm soil depth, deep RDW, RSR but decreased the root diameter. DS increased the genetic variation in RDW more at the penultimate soil depths. Genetic variation under drought was the widest for RLD ∼50 DAS, for deep RDW ∼50-75 DAS and for RSR at 35 DAS. Genotypes ICC 4958, ICC 8261, Annigeri, ICC 14799, ICC 283 and ICC 867 at vegetative stage and genotypes ICC 14778, ICCV 10, ICC 3325, ICC 14799 and ICC 1882 at the reproductive phase produced greater RLD. Path- and correlation coefficients revealed strong positive contributions of RLD after 45 DAS, deep RDW at vicinity of maturity and RSR at early podfill stages to yield under drought. Breeding for the best combination of profuse RLD at surface soil depths, and RDW at deeper soil layers, was proposed to be the best selection strategy, for an efficient water use and an enhanced terminal drought tolerance in chickpea.

10.
Ann Bot ; 118(4): 621-635, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27390351

RESUMEN

Background Deep roots are a common trait among a wide range of plant species and biomes, and are pivotal to the very existence of ecosystem services such as pedogenesis, groundwater and streamflow regulation, soil carbon sequestration and moisture content in the lower troposphere. Notwithstanding the growing realization of the functional significance of deep roots across disciplines such as soil science, agronomy, hydrology, ecophysiology or climatology, research efforts allocated to the study of deep roots remain incommensurate with those devoted to shallow roots. This is due in part to the fact that, despite technological advances, observing and measuring deep roots remains challenging. Scope Here, other reasons that explain why there are still so many fundamental unresolved questions related to deep roots are discussed. These include the fact that a number of hypotheses and models that are widely considered as verified and sufficiently robust are only partly supported by data. Evidence has accumulated that deep rooting could be a more widespread and important trait among plants than usually considered based on the share of biomass that it represents. Examples that indicate that plant roots have different structures and play different roles with respect to major biochemical cycles depending on their position within the soil profile are also examined and discussed. Conclusions Current knowledge gaps are identified and new lines of research for improving our understanding of the processes that drive deep root growth and functioning are proposed. This ultimately leads to a reflection on an alternative paradigm that could be used in the future as a unifying framework to describe and analyse deep rooting. Despite the many hurdles that pave the way to a practical understanding of deep rooting functions, it is anticipated that, in the relatively near future, increased knowledge about the deep rooting traits of a variety of plants and crops will have direct and tangible influence on how we manage natural and cultivated ecosystems.

11.
J Exp Bot ; 67(12): 3665-81, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26976814

RESUMEN

The capture of subsoil water by wheat roots can make a valuable contribution to grain yield on deep soils. More extensive root systems can capture more water, but leave the soil in a drier state, potentially limiting water availability to subsequent crops. To evaluate the importance of these legacy effects, a long-term simulation analysis at eight sites in the semi-arid environment of Australia compared the yield of standard wheat cultivars with cultivars that were (i) modified to have root systems which extract more water at depth and/or (ii) sown earlier to increase the duration of the vegetative period and hence rooting depth. We compared simulations with and without annual resetting of soil water to investigate the legacy effects of drier subsoils related to modified root systems. Simulated mean yield benefits from modified root systems declined from 0.1-0.6 t ha(-1) when annually reset, to 0-0.2 t ha(-1) in the continuous simulation due to a legacy of drier soils (mean 0-32mm) at subsequent crop sowing. For continuous simulations, predicted yield benefits of >0.2 t ha(-1) from more extensive root systems were rare (3-10% of years) at sites with shallow soils (<1.0 m), but occurred in 14-44% of years at sites with deeper soils (1.6-2.5 m). Earlier sowing had a larger impact than modified root systems on water uptake (14-31 vs 2-17mm) and mean yield increase (up to 0.7 vs 0-0.2 t ha(-1)) and the benefits occurred on deep and shallow soils and in more years (9-79 vs 3-44%). Increasing the proportion of crops in the sequence which dry the subsoil extensively has implications for the farming system productivity, and the crop sequence must be managed tactically to optimize overall system benefits.


Asunto(s)
Agricultura , Clima Desértico , Raíces de Plantas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Australia , Raíces de Plantas/fisiología , Triticum/fisiología
12.
Front Plant Sci ; 6: 1022, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26640467

RESUMEN

Fine root dynamics is a main driver of soil carbon stocks, particularly in tropical forests, yet major uncertainties still surround estimates of fine root production and turnover. This lack of knowledge is largely due to the fact that studying root dynamics in situ, particularly deep in the soil, remains highly challenging. We explored the interactions between fine root dynamics, soil depth, and rainfall in mature rubber trees (Hevea brasiliensis Müll. Arg.) exposed to sub-optimal edaphic and climatic conditions. A root observation access well was installed in northern Thailand to monitor root dynamics along a 4.5 m deep soil profile. Image-based measurements of root elongation and lifespan of individual roots were carried out at monthly intervals over 3 years. Soil depth was found to have a significant effect on root turnover. Surprisingly, root turnover increased with soil depth and root half-life was 16, 6-8, and only 4 months at 0.5, 1.0, 2.5, and 3.0 m deep, respectively (with the exception of roots at 4.5 m which had a half-life similar to that found between depths of 1.0 and 2.5 m). Within the first two meters of the soil profile, the highest rates of root emergence occurred about 3 months after the onset of the rainy season, while deeper in the soil, root emergence was not linked to the rainfall pattern. Root emergence was limited during leaf flushing (between March and May), particularly within the first two meters of the profile. Between soil depths of 0.5 and 2.0 m, root mortality appeared independent of variations in root emergence, but below 2.0 m, peaks in root emergence and death were synchronized. Shallow parts of the root system were more responsive to rainfall than their deeper counterparts. Increased root emergence in deep soil toward the onset of the dry season could correspond to a drought acclimation mechanism, with the relative importance of deep water capture increasing once rainfall ceased. The considerable soil depth regularly explored by fine roots, even though significantly less than in surface layers in terms of root length density and biomass, will impact strongly the evaluation of soil carbon stocks.

14.
J Exp Bot ; 65(21): 6231-49, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24963000

RESUMEN

We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes.


Asunto(s)
Raíces de Plantas/genética , Triticum/genética , Cruzamiento , Variación Genética , Genotipo , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Suelo , Triticum/anatomía & histología , Triticum/crecimiento & desarrollo
15.
Front Plant Sci ; 4: 299, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23964281

RESUMEN

The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of "deep roots" is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques.

16.
New Phytol ; 163(3): 507-517, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33873731

RESUMEN

• To assess hydraulic architecture and limitations to water transport across whole trees, we compared xylem anatomy, vulnerability to cavitation (Ψ50 ) and specific hydraulic conductivity (Ks ) of stems, shallow roots and deep roots (from caves to 20 m depth) for four species: Juniperus ashei, Bumelia lanuginosa, Quercus fusiformis and Quercus sinuata. • Mean, maximum and hydraulically weighted (Dh ) conduit diameters and Ks were largest in deep roots, intermediate in shallow roots, and smallest in stems (P < 0.05 for each). Mean vessel diameters of deep roots were 2.1-4.2-fold greater than in stems, and Ks was seven to 38 times larger in the deep roots. • Ψ50 also increased from stems to roots with depth, as much as 24-fold from stems to deep roots in B. lanuginosa. For all species together, Ψ50 was positively correlated with both Dh and Ks , suggesting a potential trade-off exists between conducting efficiency and safety. • The anatomical and hydraulic differences documented here suggest that the structure of deep roots minimizes flow resistance and maximizes deep water uptake.

17.
Oecologia ; 108(4): 583-595, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28307789

RESUMEN

The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA