RESUMEN
Background: Breast cancer is the most frequently diagnosed and leading cause of cancer-related deaths among females. The treatment of breast cancer with radiotherapy, albeit effective, has been shown to be toxic to the heart, resulting in an elevated risk of cardiovascular disease and associated fatalities. Methods: In this study, we evaluated the impact of respiratory movement, treatment plans and dose calculation algorithm on the dose delivered to the heart and its substructures during left breast radiotherapy over a cohort of 10 patients. We did this through three image sets, four different treatment plans and the employment of three algorithms on the same treatment plan. The dose parameters were then employed to estimate the impact on the 9-year excess cumulative risk for acute cardiac events by applying the model proposed by Darby. Results: The left ventricle was the structure most irradiated. Due to the lack of four-dimensional computed tomography (4DCT), we used a set of images called phase-average CT that correspond to the average of the images from the respiratory cycle (exhale, exhale 50%, inhale, inhale 50%). When considering these images, nearly 10% of the heart received more than 5 Gy and doses were on average 27% higher when compared to free breathing images. Deep inspiration breath-hold plans reduced cardiac dose for nine out of 10 patients and reduced mean heart dose in about 50% when compared to reference plans. We also found that the implementation of deep inspiration breath-hold would reduce the relative lifetime risk of ischemic heart disease to 10%, in comparison to 21% from the reference plan. Conclusion: Our findings illustrate the importance of a more accurate determination of the dose and its consideration in cardiologists' consultation, a factor often overlooked during clinical examination. They also motivate the evaluation of the dose to the heart substructures to derive new heart dose constraints, and a more mindful and individualized clinical practice depending on the treatment employed.
RESUMEN
Background: The objective was to explore the clinical use of an "in-house" prototype developed to monitor respiratory motion to implement the deep inspiration breath hold technique (DIBH), compare dosimetric differences, and assess whether simple anatomic metrics measured on free breathing (FB) computed tomography scan (CT) can help in selecting patients that would benefit the most from the technique. Materials and methods: A prospective study was conducted on patients with left breast cancer with an indication of adjuvant radiotherapy for breast only. Treatment simulation consisted of four series of CTs: the first during FB and three in DIBH to assess the reproducibility and stability of apnea. Contouring was based on the RTOG atlas, and planning was done in both FB and DIBH. Dosimetric and geometric parameters were assessed and compared between FB and DIBH. Results: From June 2020 to December 2021, 30 patients with left breast cancer were recruited. Overall, the DIBH technique presented a mean dose reduction of 24% in the heart and 30% in the left anterior descendent coronary artery (LAD) (p < 0.05). The only geometric parameter correlated to a 30% dose reduction in the mean heart dose and LAD doses was the anterolateral distance from the heart to the chest wall of at least 1.5 cm measured on FB (p < 0.0001). Conclusion: The prototype enabled the use of the DIBH technique with dose reductions in the heart and LAD. The benefit of the DIBH technique can be predicted on FB CT by measuring the distance between the heart and chest wall at the treatment isocenter.