Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(9): 5808-5819, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35442653

RESUMEN

Sulfidized nanoscale zerovalent iron (SNZVI) with desirable properties and reactivity has recently emerged as a promising groundwater remediation agent. However, little information is available on how the molecular structure of chlorinated ethenes (CEs) affects their dechlorination by SNZVI or whether the sulfur content of SNZVI can alter their dechlorination pathway and reactivity. Here, we show that the reactivity (up to 30-fold) and selectivity (up to 70-fold) improvements of SNZVI (compared to NZVI) toward CEs depended on the chlorine number, chlorine position, and sulfur content. Low CEs (i.e., vinyl chloride and cis-1,2-dichloroethene) and high CEs (perchloroethene) tended to be dechlorinated by SNZVI primarily via atomic H and direct electron transfer, respectively, while SNZVI could efficiently and selectively dechlorinate trichloroethene and trans-1,2-dichloroethene via both pathways. Increasing the sulfidation degree of SNZVI suppressed its ability to produce atomic H but promoted electron transfer and thus altered the relative contributions of atomic H and electron transfer to the CE dechlorination, resulting in different reactivities and selectivities. These were indicated by the correlations of CE dechlorination rates and improvements with CE molecular descriptors, H2 evolution rates, and electron transfer indicators of SNZVI. These mechanistic insights indicate the importance of determining the structure-specific properties and reactivity of both SNZVI materials and their target contaminants and can lead to a more rational design of SNZVI for in situ groundwater remediation of various CEs.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Cloro , Etilenos , Estructura Molecular , Azufre
2.
Environ Pollut ; 291: 118157, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34530245

RESUMEN

Aroclor 1260, a commercial polychlorinated biphenyl (PCB) mixture, is highly recalcitrant to biotransformation. A negatively polarized cathode (-0.35 V vs. standard hydrogen electrode) was applied for the first time to a marine-origin PCB dechlorinating culture that substantially increased the microbial dechlorination rate of Aroclor 1260 (from 8.6 to 11.6 µM Cl- d-1); meta-chlorine removal was stimulated and higher proportions of tetra-CBs (43.2-46.6%), the predominant dechlorination products, were observed compared to the open circuit conditions (23.7-25.1%). The dechlorination rate was further enhanced (14.1 µM Cl- d-1) by amendment with humin as a solid-phase redox mediator. After the suspension culture was renewed using an anaerobic medium, dechlorination activity was effectively maintained solely by cathodic biofilms, where cyclic voltammetry results indicated their redox activity. Electric potential had a significant effect on microbial community structure in the cathodic biofilm, where a greater abundance of Dehalococcoides (2.59-3.02%), as potential dechlorinators, was observed compared to that in the suspension culture (0.41-0.55%). Moreover, Dehalococcoides adhering to the cathode showed a higher chlorine removal rate than in the suspension culture. These findings provide insights into the dechlorination mechanism of cathodic biofilms involving Dehalococcoides for PCB mixtures and extend the application prospects of bioremediation to PCB contamination in the natural environment.


Asunto(s)
Chloroflexi , Bifenilos Policlorados , Arocloros , Biodegradación Ambiental , Cloro , Sedimentos Geológicos
3.
J Hazard Mater ; 352: 172-181, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29609149

RESUMEN

Mechanochemical degradation (MCD) is a promising eco-friendly method to dispose persistent organic pollutants (POPs). Mechanically induced free-radical attack was thought to be one of the key elements in initiating and accelerating the dechlorination and degradation of POPs. In this study, mechanochemical formation of free-radicals and their roles in the remediation of hexachlorobenzene (HCB) contaminated soil were explored using both of experimental analysis and quantum chemical calculations. It was found that chlorinated phenoxy radicals(CB-O) can be produced in the milling process and they played a vital role in the dechlorination of HCB, based on the results of electron spin-resonance (ESR) and X-ray photoelectron spectra (XPS). Two transition states of mechanochemical reaction along the formation of pentachlorinated phenoxy radical (PeCB-O) were located, with the energy barriers of 39.4 and 3.4 kJ/mol. The localized orbital locator (LOL), Mayer bond order and topological analysis were also implemented to depict the process in detail. Free-radical attack dominated dechlorination pathway of HCB in the MCD process was also verified by the Fukui function analysis. The study on the mechanically-induced generation of free-radicals and their associated modes of action on the degradation of HCB will provide a deep insight into mechanochemical remediation mechanism of POPs contaminated soil.

4.
Chemosphere ; 159: 668-675, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27320438

RESUMEN

This paper studies the synergism between transition metals (TMs) and activated carbon (AC) as a catalyst support used in the catalytic decomposition of PCBs. A series of AC-supported TM catalysts was prepared according to two distinct methods: impregnation and ion exchange which were defined as LaTM-C and IRTM-C, respectively. The catalytic reactions between 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) and AC-supported Fe, Ni, Cu and Zn catalysts were conducted under N2 atmosphere. Changes in the nature of the catalysts as well as the decomposition mechanism of PCB-153 are discussed. Important findings include: (i) a higher metal concentration and a better metal distribution on AC is realized using ion-exchange, despite a lower AC specific surface area, (ii) IRTM-C had better effects on the decomposition of PCB-153 than LaTM-C, (iii) the role of Ni, Cu, and Fe as electron donors in PCB dechlorination was evaluated vs. the stability of Zn, and (iv) both temperature and chemical composition of TM catalysts influenced the decomposition efficiency of PCBs.


Asunto(s)
Carbón Orgánico/química , Metales/química , Modelos Químicos , Bifenilos Policlorados/química , Catálisis , Halogenación , Temperatura
5.
J Hazard Mater ; 296: 120-127, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25913678

RESUMEN

A detailed quantitative analysis of anaerobic dechlorination (AD) pathways of polychlorinated biphenyls (PCBs) in sediment microcosms was performed by applying an anaerobic dechlorination model (ADM). The purpose of ADM is to systematically analyze changes in a contaminant profile that result from microbial reductive dechlorination according to empirically determined dechlorination pathways. In contrast to prior studies that utilized modeling tools to predict dechlorination pathways, ADM also provides quantification of individual pathways. As only microbial reductive dechlorination of PCBs occurred in the modeled laboratory microcosms, extensive analysis of AD pathways was possible without the complicating effect of concurrent physico-chemical or other weathering mechanisms. The results from this study showed: (1) ninety three AD pathways are active; (2) tetra- to hepta-chlorobiphenyl (CB) congeners were common intermediates in several AD pathways, penta-CBs being the most frequently observed; (3) the highest rates of dechlorination were for penta-CB homologs during the initial 185 days; (4) the dominant terminal products of AD were PCB 32(26-4), 49(24-25), 51(24-26), 52(25-25), 72(25-35), 73(26-35) and 100(246-24), (5) potential toxicity of the sediment was reduced. ADM serves as a powerful tool not only for a thorough analysis of AD pathways, but also for providing necessary input for numerical fate models (as a degradation term) that investigate dechlorination products or outcome of natural attenuation, or bioremediation/bioaugmentation of PCB-impacted sediments.


Asunto(s)
Bacterias Anaerobias/crecimiento & desarrollo , Sedimentos Geológicos , Bifenilos Policlorados/química , Contaminantes Químicos del Agua/química , Anaerobiosis , Biodegradación Ambiental , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Halogenación , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA