Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 345: 122583, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227111

RESUMEN

Herein, the effects of temperature cycling (4 °C/50 °C/100 °C) on the recrystallization, physicochemical properties, and digestibility of debranched starch (DBS) were investigated. Temperature cycling involved heating DBS to 100 °C to dissociate weak heat-sensitive crystalline structures and cooling to 4 °C to induce the rapid growth of crystal nuclei, followed by maintaining the temperature at 50 °C to promote orderly crystalline growth. This procedure aimed to increase the degree of crystalline structure in recrystallized DBS, thereby resulting in DBS that was heat- and digestion-resistant. Temperature cycling increased the dissociation temperature of DBS, and temperatures of up to 114.8 °C were attained after five cycling times. With increasing cycles, the crystalline structure of DBS transitioned from B-type to the more robust and compact A-type, and the crystallinity increased to ∼81.9 % (after seven cycles). Raman and Fourier transform infrared (FTIR) spectra indicated that temperature cycling enhanced the short-range ordered structure of DBS. Moreover, in vitro digestion experiments demonstrated that the resistant starch content of DBS increased to ∼61.9 % after eight cycles. To summarize, this study demonstrated a green and effective method for preparing heat-and digestion-resistant recrystallized DBS, which can be used for developing dietary supplements and low gastrointestinal staples.

2.
Int J Biol Macromol ; 278(Pt 1): 134543, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111511

RESUMEN

In this study, biotin esterified debranched starch (Bio-DBS) nanoparticles with different molecular weights were prepared to improve the stability and antioxidant activity of resveratrol. The molecular weights of branched starch (DBS3, DBS9 and DBSp) determined by high-performance size-exclusion chromatography (HPSEC) were 3306, 3696, and 4688, respectively. Biotin was covalently coupled to DBS through the esterification reaction as a new material to prepare nanoparticles. The morphology, particle size, and loading capacity of Bio-DBS nanoparticles were all related to the molecular weights of DBS. The 1H NMR results indicated that there was a hydrogen bonding interaction between Bio-DBS and resveratrol, which contributed to the photochemical and antioxidant activity of resveratrol in the nanoparticles. The highest encapsulation efficiency (78.9 %) and loading capacity (15.78 %) of resveratrol were observed in Bio-DBS3 nanoparticles. Additionally, the cell viability was over 80 % when the concentration of Bio-DBS3 reached to 200 µg/mL. The Bio-DBS nanoparticles significantly improved the thermal stability, photostability, and antioxidant properties of resveratrol. Therefore, the Bio-DBS nanoparticles prepared in this study can be used as a promising carrier to improve the stability and antioxidant activity of resveratrol and may have potential applications in oral delivery.


Asunto(s)
Antioxidantes , Biotina , Portadores de Fármacos , Nanopartículas , Resveratrol , Almidón , Resveratrol/química , Resveratrol/farmacología , Almidón/química , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Portadores de Fármacos/química , Biotina/química , Tamaño de la Partícula , Humanos , Estabilidad de Medicamentos , Esterificación , Administración Oral , Supervivencia Celular/efectos de los fármacos
3.
Int J Biol Macromol ; 276(Pt 1): 133913, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025192

RESUMEN

Aiming to develop flat rice noodles with both desirable textural quality and lower starch digestibility, we investigated the effect of adding indica rice debranched starch (RDBS) on the quality of flat rice noodles. In this study, adding RDBS to flat rice noodles enhanced their mechanical properties. Cooking characteristic analysis showed that incorporating RDBS into dried flat rice noodles increased the rehydration ratio by 16.1 % and reduced rehydration time by 26.5 %. Scanning electron microscopy (SEM) revealed the presence of microparticles formed through the self-assembly of RDBS within the network of flat rice noodles. X-ray diffraction (XRD) analysis demonstrated that the addition of RDBS elevated the crystallinity of the flat rice noodles, rising from 9.59 % to 22.57 %. In addition, the in vitro simulated digestion test suggested the addition of RDBS led to a threefold increase in the content of slowly digestible starch (SDS) and a ninefold increase in resistant starch (RS) content in flat rice noodles. This study found that adding RDBS into flat rice noodles can effectively reduce their digestion rate and improve their eating quality. It could be a promising approach for creating functional rice noodles aimed at alleviating public health concerns such as diabetes and obesity.


Asunto(s)
Digestión , Oryza , Almidón , Oryza/química , Almidón/química , Almidón/metabolismo , Fenómenos Químicos , Culinaria , Difracción de Rayos X
4.
Foods ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790786

RESUMEN

Chickpea has significant benefits as an adjuvant treatment for type 2 diabetes mellitus (T2DM). The properties of chickpea resistant starches (RSs) and their abilities to reduce T2DM symptoms and control intestinal flora were investigated. The RS content in citrate-esterified starch (CCS; 74.18%) was greater than that in pullulanase-modified starch (enzymatically debranched starch (EDS); 38.87%). Compared with those of native chickpea starch, there were noticeable changes in the granular structure and morphology of the two modified starches. The CCS showed surface cracking and aggregation. The EDS particles exhibited irregular layered structures. The expansion force of the modified starches decreased. The CCS and EDS could successfully lower blood glucose, regulate lipid metabolism, lower the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), reduce the expressions of interleukin-6 (IL-6) and interleuki n-10 (IL-10), and decrease diabetes-related liver damage. Moreover, the CCS and EDS altered the intestinal flora makeup in mice with T2DM. The abundance of Bacteroidota increased. Both types of chickpea RSs exhibited significant hypoglycaemic and hypolipidaemic effects, contributing to the reduction in inflammatory levels and the improvement in gut microbiota balance.

5.
Int J Biol Macromol ; 272(Pt 1): 132678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801851

RESUMEN

This study evaluated the effects of starch with varying degree of debranching on the rheological, thermal, and structural properties of heat-induced gluten gel. As the duration of starch debranching treatment increased from 0 to 8 h, the viscoelasticity of the gel containing debranched starch (DBS) improved. Compared with the gluten gel (G), the gel strength of the G + DBS (8 h) sample increased by 65.2 %. The degradation temperature of gluten was minimally affected by DBS, while the weight loss rate increased by 4.4 %. Furthermore, the α-helical structure of gluten decreased, concomitant with an increase in ß-sheet content. Notably, DBS treated for 8 h exhibited more hydrogen bonds with the tyrosine of gluten and triggered disulfide bridge conformation to transition from g-g-g to t-g-g, thereby reducing the stability of the molecular conformation of gluten proteins, as evidenced by the decreased height and width of the molecular chains observed in atomic force microscopy images. Overall, the composite gel structure induced by DBS exhibited a more continuous and homogeneous owing to the improved compatibility between DBS and gluten proteins, favoring the formation of a robust gel. These findings provide valuable insights for utilizing DBS to enhance gluten gel properties.


Asunto(s)
Geles , Glútenes , Calor , Reología , Almidón , Glútenes/química , Almidón/química , Geles/química , Viscosidad
6.
Int J Biol Macromol ; 261(Pt 2): 129812, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302033

RESUMEN

The hypoglycemic effects of two recrystallized resistant starches, A-type (ARS) and B-type (BRS), were investigated in type 2 diabetic mice. Mice were treated with low-, medium-, or high-dose ARS, high-dose BRS, or high-dose ARS combined with BRS (ABRS). After 10 weeks of continuous intervention, the medium-dose ARS group showed a significant reduction in fasting blood glucose, area under the curve of glucose, triglyceride (P < 0.01), and low-density lipoprotein (P < 0.05) levels compared to the model group and an increase in high-density lipoprotein levels (P < 0.01). The peptide YY and glucagon-like peptide-1 levels in the high-dose ARS, BRS, and ABRS groups and the butyric acid yield in the medium-dose ARS and BRS groups were significantly increased (P < 0.01) compared to those in the model group. Medium- and high-dose ARS intervention efficiently increased the relative abundance of beneficial Bacteroidetes, Lactobacillus, Lachnospiraceae_NK4A136_group, and Faecalibaculum, and lowered the ratio of Firmicutes to Bacteroidetes. Overall, ARS exhibited greater advantages than BRS in lowering blood sugar levels.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Almidón Resistente/farmacología , Estreptozocina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico
7.
Carbohydr Polym ; 330: 121826, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368105

RESUMEN

Zinc deficiency is a serious risk to human health and growth, especially in children. The development of zinc supplements can effectively reduce this harm. Here, a series of debranched starch­zinc complexes (DS-Zn) were prepared, whose zinc complexation was inversely proportional to the amylopectin content in the debranched starch (DS). The physicochemical properties of DS-Zn were characterized using the conductivity, XRD, iodine staining and thermogravimetry. Combined with XPS, solid-state 13C NMR and IR, it was elucidated that the structure of DS-Zn is endoconcave structure with 2-O and 3-O of DS on the inner side and 6-O of DS on the outer side, where zinc is located. The DS-Zn exhibits good biosafety including blood, cellular and mutagenicity. In vitro simulations of digestion and zinc-deficient cellular models showed that DS-Zn was more tolerant to the gastrointestinal environment and more effective in zinc supplementation (increased by 33 %) than inorganic zinc supplements. Utilizing the compressibility of starch, DS-Zn was prepared as a more palatable oral cartoon tablet for children. This study will provide important support to advance the development and application of novel starch-based zinc nutritional supplements.


Asunto(s)
Almidón , Zinc , Niño , Humanos , Almidón/química , Zinc/química , Amilopectina , Espectroscopía de Resonancia Magnética
8.
Food Chem ; 442: 138379, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241990

RESUMEN

The effects of the structure and digestibility of konjac glucomannan (KGM)-recrystallized resistant starch complex (KRS3) on the glycemic response and short-term satiety in mice were investigated. KRS3 samples were prepared by recrystallized debranched starch (RS3) at 50 °C, and then combined with KGM. The RS3 and KRS3 samples displayed an A-type pattern and maintained peak temperature values above 110 °C. With an increase in KGM, the swelling power and apparent viscosity of KRS3 increased. The results of in vitro and in vivo digestion revealed that KRS3 with a resistant starch content ranging from 69.4 % to 78.8 % could effectively maintain postprandial blood glucose levels. KRS3, particularly with 0.5 % KGM, slowed gastric emptying of mice from 82.7 % to 36.6 % and intestinal propulsion rate from 60.9 % to 35.3 %, resulting in strong satiety. RS3 combined with KGM could serve as a new approach to develop RS3 based foods with low glycemic responses and high-satiety.


Asunto(s)
Glucosa , Almidón Resistente , Animales , Ratones , Almidón/química , Mananos/química
9.
Curr Res Food Sci ; 7: 100589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744555

RESUMEN

High amylose starch shows wide applications in food and non-food-based industries. Traditional complex-precipitation approach for the amylose fractionation required a large volume of organic reagents and was possibly risky for food safety. The object of this work was to establish a novel method to obtain starch fractions rich in amylose from debranch starch through repeated short-term retrogradation and centrifugation. Four starch fractions were obtained with the amylose content of 52.08% (C1), 62.28% (C2), 63.58% (C3), and 64.74% (C4). The thermograms of samples displayed that multiple endothermic peaks were detected in C1 and C2 and only one endothermic peak with melting temperature over 120 °C were observed in C3 and C4, indicating their differences in retrogradation behavior. The chain length distribution results of sample exhibited that C1 and C2 contained more short chains (DP ≤ 24), while C3 and C4 consisted of mainly long chains (DP ≥ 25). Accordingly, the differences in fine structures could provide more choices for these fractionated high amylose starch to utilize in practical applications.

10.
J Agric Food Chem ; 71(31): 12080-12093, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507341

RESUMEN

The structure and properties of resistant starch (RS) and its digestive products were assessed in mice. Digestion of recrystallized (group RS3, including RS3a and RS3b) and control RS (RS2, RS4, and RS5) in the stomach, duodenum, and ileum of mice was systematically analyzed along with in vivo digestive degradation of RS3. RS3a and RS3b significantly reduced the release of blood glucose. During in vivo digestion, the proportion of ultrashort and A chains in the RS3a and RS3b digestive residues gradually increased, whereas the proportion of B1 and B2 chains gradually reduced. B3+ chain proportions did not change. The final digestive residues in the ileum (RS3a-I90 and RS3b-I90) maintained a high proportion of suitable chain length, accounting for more than 60%. The crystalline structure of RS3a-I90 was weakened, indicating the hydrolysis of partial crystal structure. In comparison, RS3b-I90 maintained an orderly crystalline structure, indicating its higher resistance to enzymatic hydrolysis. In vivo experiments showed that RS could maintain the normal growth of mice and effectively control weight gain. RS3a significantly increased the concentrations of acetic, propionic, and butyric acids, while reducing the abundance of Firmicutes to Bacteroidetes ratio, further confirming the benefits of RS3 in gastrointestinal health.


Asunto(s)
Microbioma Gastrointestinal , Almidón Resistente , Glucemia , Digestión , Duodeno/metabolismo , Íleon/metabolismo , Almidón/química , Estómago , Animales , Ratones
11.
Food Chem X ; 18: 100728, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37397217

RESUMEN

Simultaneous realization of high strength, toughness, and fatigue resistance in natural starch-based hydrogel materials is challenging. A facile method of in situ self-assembly and a freeze-thaw cycle was proposed to construct double-network nanocomposite hydrogels of debranched corn starch/polyvinyl alcohol (Gels). Rheology, chemical structure, microstructure, and mechanical property of Gels were investigated. Notably, short linear starch chains were self-assembled into nanoparticles and subsequently into 3D microaggregates, which were tightly wrapped by starch and PVA network. Compared with corn starch single-network and starch/PVA double-network hydrogels, the Gels reached up to a higher compressive strength (ca. 1095.7 kPa), and then achieved to ∼20-30-fold improvement in compressive strength. Recovery efficiency exceeded 85% after 20 successive compression loading-unloading cycle tests. Furthermore, the Gels had good biocompatibility to L929 cells. Hence, the high-performance starch hydrogels are thought to serve as a biodegradable and biocompatible material to replace synthetic hydrogels, which can broaden their application fields.

12.
Int J Biol Macromol ; 241: 124562, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37088190

RESUMEN

Alcohol solution is a cheap, simple, and effective precipitating solvent frequently used for separating debranched starch (DBS), yet little is known about the precipitation mechanism of DBS by different alcohols. This study precipitated DBS from pullulanase-hydrolyzed starch using ethanol, n-butanol, and isopentanol. The multiscale structures of DBS were characterized, including chain length, single/double helix, and crystalline. The chain conformation and precipitation mechanism of DBS in different alcohols was investigated using molecular dynamics (MD) simulation. DBS precipitated by n-butanol contained the largest proportion of short chain (DP6-24, 83.2 %), the highest V-type crystallinity (21.1 %), and the largest single-helix content (24.7 %). A single helix conformation of DBS chain was determined in alcohols, where alcohol molecules entered the helix cavity. Intra/inter-molecular hydrogen bonds stabilized the helix, with a large number of hydrogen bonds leading to strong molecular interaction and stable helical structure. The solvent accessible surface area of DBS chain decreased by 7.88-19.32 % in alcohols, and the radial distribution function revealed that the first solvent layer of DBS chain at 0.29 nm was closely related to hydrogen bonding. This study provides a basis for the choice of precipitation solvent for preparing DBS with different chain lengths and physicochemical properties.


Asunto(s)
Alcoholes , Almidón , Almidón/química , Alcoholes/química , 1-Butanol , Solventes/química , Simulación de Dinámica Molecular
13.
Food Res Int ; 162(Pt A): 111926, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461275

RESUMEN

A series of cinnamic acid (CA)-esterified debranched starch (CDS) containing aromatic systems were prepared and successfully fabricated as nanoparticles to encapsulate curcumin by taking advantage of the additional π-π interactions provided from CA. The CDS nanoparticles (CDS NPs) have good dispersion (polydispersity index of 0.124-0.314) and sizes range of 130-330 nm. The excellent biosafety of CDS NPs was demonstrated by hemolysis, cytotoxicity and mutagenicity assays. Efficient encapsulation (LC = 26.86 %) and sustained release of curcumin were achieved, and the curcumin-encapsulated CDS NPs (CDS-Cur NPs) increased 266-fold water solubility and 2.3-6.5-fold photothermal stability for curcumin, compared to free curcumin. Functional studies showed that CDS-Cur NPs exhibited superior biofilm scavenging ability, with a 2-4.3-fold improvement compared to free curcumin. In addition, CDS-Cur NPs also exhibited far superior antibacterial effects than free curcumin in a bacteriostatic food model of chicken breast. This study not only provides a new scheme for the efficient loading of curcumin, but also provides new ideas for the usage of starch-based materials in antibacterial applications.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/farmacología , Almidón , Antibacterianos/farmacología
14.
Carbohydr Polym ; 256: 117424, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33483014

RESUMEN

The objective of this study is to investigate physicochemical characteristics and digestibility of starch nanoparticles (SNPs) fabricated from debranched cassava starch varying degree of polymerization (DP¯n) using nanoprecipitation and microemulsion methods. The high DP¯n starch (HDPS) with DP¯n > 35 monomers, medium DP¯n starch (MDPS) with 15 < DP¯n < 30) and low DP¯n starch (LDPS) with DP¯n < 10 were used. The SNPs fabricated from the HDPS were well-dispersed and smaller size, whereas those prepared from the MDPS and LDPS had bigger size and more aggregation. The SNPs produced by the microemulsion method were larger and more aggregated than those by the nanoprecipitation method. All SNPs exhibited the V + B-type X-ray diffraction pattern with higher relative crystallinity and more ordered structure than native starch. The SNPs fabricated from the LDPS also had higher amount of RS with lower blood glucose response in mice than those from the MDPS and HDPS.


Asunto(s)
Glucemia/efectos de los fármacos , Emulsiones , Nanopartículas/química , Polímeros/química , Almidón/química , Animales , Glucemia/análisis , Cristalización , Dispersión Dinámica de Luz , Etanol/química , Prueba de Tolerancia a la Glucosa , Luz , Sustancias Macromoleculares , Manihot/química , Ratones , Nanotecnología/métodos , Tamaño de la Partícula , Polimerizacion , Dispersión de Radiación , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
15.
Int J Biol Macromol ; 167: 595-604, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33278451

RESUMEN

Recently, amylose-lipid complexes have attracted widespread attention because of their various applications. However, DBS complexed with fatty acids of different carbon chain length are rarely studied. This study aimed to probe the complexation of DBS with saturated fatty acids having different carbon chain lengths (C6-C18). The results revealed that DBS was able to form V-type complexes with all the fatty acids considered. Compared to DBS, the relative crystallinity of the complexes increased 2-3 times. DBS with lauric acid and myristic acid formed three types V-type complexes (type I, type IIa, and type IIb). The complexing index followed the order of hexanoic acid > octanoic acid > capric acid > lauric acid > myristic acid > palmitic acid > stearic acid. Furthermore, lauric acid and myristic acid formed complexes with DBS more easily compared with other fatty acids.


Asunto(s)
Ácidos Grasos/química , Almidón/química , Conformación de Carbohidratos , Microscopía Electrónica de Rastreo , Modelos Moleculares , Polimerizacion
16.
Carbohydr Polym ; 246: 116586, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32747246

RESUMEN

Chitosan hydrogels fabricated by covalent crosslinking exhibit tough mechanical properties and chemical stability. In this paper, debranched starch (DBS) is oxidized to dialdehyde debranched starch (DADBS), which is used as a new type of a crosslinking agent to prepare hydrogels. Chitosan hydrogels with excellent properties are prepared by dynamic Schiff-base crosslinking between the aldehyde groups in DADBS and the amino groups in chitosan. Hence, chitosan hydrogels exhibit a rapid gelation ability, with a gelation time of less than 30 s, and their storage modulus increases with the gelation time. By adjusting the molar ratio of the amino group of chitosan to the aldehyde group of DADBS and the reaction temperature, the hydrogels exhibit tunable elasticity and mechanical properties. Notably, scanning electron microscopy revealed the presence of 100-200 nm microgels in the hydrogel network, which could exert a strengthening effect on the mechanical properties of the hydrogels. In addition, chitosan hydrogels exhibit a rapid self-healing ability and remarkable fluorescence properties; also, they can be 3D printed in different shapes. Overall, the DADBS cross-linked chitosan hydrogels demonstrate potential applications in food, medicine, agriculture, and materials.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Bases de Schiff/química , Almidón/química , Elasticidad , Fluorescencia , Humanos , Ensayo de Materiales , Oxidación-Reducción , Transición de Fase , Temperatura , Humectabilidad
17.
Int J Biol Macromol ; 161: 746-754, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32553966

RESUMEN

Curcumin has been widely recognized as health-promoting compound. However, the intrinsic hydrophobicity, chemical instability and photodegradation limits its applications in foods. In this study, a novel emulsion was developed to encapsulate curcumin using debranched starch (DBS). The encapsulation efficiency of curcumin was 71.11% with a loading rate of 12.07%. The prepared emulsions showed better stability and solubility of curcumin than those stabilized only with Tween80 and lectin. The DBS incorporated emulsion had a uniform droplet size distribution with an average value of <1 µm. The molecular dynamics (MD) simulation showed that the water bridge between debranched starch and curcumin may play an important role in the complexation process, thus contributing to a better performance of the emulsion. This work shed light on the encapsulation process and interaction between DBS and curcumin, which is valuable to develop new emulsion-based delivery systems for bioactive lipophilic compounds using modified starch.


Asunto(s)
Curcumina/química , Sistemas de Liberación de Medicamentos , Simulación de Dinámica Molecular , Almidón/química , Composición de Medicamentos , Emulsionantes/química , Emulsiones
18.
Ultrason Sonochem ; 66: 105074, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32224448

RESUMEN

With recent advances in nanotechnology, debranched starch nanoparticle (DBS-NP) materials have attracted considerable interest from the fields of functional food, biomedicine, and material science, thanks to their small size, biodegradability, biocompatibility, sustainability, and non-hazardous effects on health and the environment. In this study, DBS-NP was fabricated using an eco-friendly method involving ultrasonication combined with recrystallization. The effects of ultrasonication and recrystallization times on the morphology, particle size, and crystal structure of the DBS-NPs were systematically investigated. Compared with the DBS-NPs prepared using ultrasonication treatment only, the DBS-NPs formed using ultrasonication combined with recrystallization were uniform in size and well distributed in aqueous solution. Moreover, the maximum encapsulation efficiency and loading capacity of the epigallocatechin gallate (EGCG) in the DBS-NPs with ultrasonication treatment reached 88.35% and 22.75%, respectively. The particle sizes of the EGCG@DBS-NP were more stable at a neutral pH (7.4) than at an acidic pH (2.1). The EGCG in the EGCG@DBS-NP displayed excellent radical scavenging activity and antibacterial effects, and cell assays demonstrated that the EGCG@DBS-NP was non-toxic and highly biocompatible.


Asunto(s)
Nanopartículas/química , Nanotecnología/métodos , Sonicación/métodos , Almidón/química , Catequina/análogos & derivados , Catequina/química , Cristalización , Radicales Libres/química , Tecnología Química Verde , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Tamaño de la Partícula , Temperatura
19.
J Agric Food Chem ; 67(10): 2916-2925, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30789721

RESUMEN

Recently, starch nanoparticles have attracted widespread attention from various fields. In this study, a new strategy for preparing covalent-cross-linked starch nanoparticles was developed using boron ester bonds formed between debranched starch (DBS) and borax. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The obtained nanoparticles were spherical with a size of 100-200 nm. The formation of boron ester bonds was confirmed by FTIR. The as-prepared starch nanoparticle exhibited a low relative crystallinity of 13.6%-23.5%. Compared with pure starch film, the tensile strength of starch film with 10% starch nanoparticles increased about 45%, and the elongation at break percentage of starch film with 5% starch nanoparticles increased about 20%. The new strategy of forming starch nanoparticles by using boron ester bonds will advance the research of carbohydrate nanoparticles.


Asunto(s)
Boratos/química , Extractos Vegetales/química , Almidón/química , Zea mays/química , Rastreo Diferencial de Calorimetría , Reactivos de Enlaces Cruzados/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Resistencia a la Tracción , Difracción de Rayos X
20.
J Agric Food Chem ; 63(2): 634-41, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25557535

RESUMEN

In this study, debranched-starch/phosphatidylcholine inclusion complexes were prepared. The effect of reaction parameters such as reaction temperature, reaction time, and addition amount of phosphatidylcholine on the phosphatidylcholine payload and inclusion rate was investigated. The phosphatidylcholine payload and inclusion rate prepared under the optimal conditions were 106 mg/g and 84.8%, respectively. The formation of debranched-starch/phosphatidylcholine inclusion complexes was confirmed by the results of XRD and FT-IR. Furthermore, the molecular, cluster, and fractal structures of the complexes were investigated using (13)C CP/MAS NMR and SAXS. The results indicated that the inclusion complexes were formed by hydrophobic interactions between alkyl chain of phosphatidylcholine and debranched-starch helix cavity. The complexes possessed a mass fractal structure, and a semicrystalline structure with a Bragg distance of 19.04 nm formed. After complexation, the stability of phosphatidylcholine was significantly improved, and phosphatidylcholine of the complexes can be gradually released with pancreatin treatment. This study revealed that debranched-starch can be used as an effective carrier of phosphatidylcholine for the purpose of improving its stability.


Asunto(s)
Fosfatidilcolinas/química , Almidón/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética , Estructura Molecular , Polímeros/química , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA