Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Heliyon ; 10(14): e34832, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148967

RESUMEN

The problem of extreme phenomena with a more precise estimation of their return periods for early warnings, notably to preserve the safety of populations and properties, arises all over the world. This work develops another aspect in the estimation of Return Levels (RLs) and Return Periods (RPs) of extreme precipitation in particular and natural risk in general. In particular, it gives the Return Dates (RDs) with their Confidence Intervals (CIs). The RPs, the RLs and their CIs for extreme rainfall were also investigated. These estimates were made by approaching the peak over a threshold chosen by the Generalized Pareto Distribution (GPD). The CIs of RPs and RLs were determined by the Delta method. The daily rainfall data used were obtained from the data of the synoptic report for the period 2011 to 2021 for the Douala weather station (more details can be found on http://www.ogimet.com/guia.phtml.en). To validate the methods used, real cases of floods occurred in Douala city were considered: for example, a local press compiled flood dates and mentioned that a flood occurred on the April 16, 2013 in this city. Following the data of synoptic report, the corresponding amount of rainfall was around 150 mm. The results obtained have shown a RD on the August 12, 2014. The confidence intervals of return levels and return dates determined by the Delta method were [131.66, 168.456] and [June 23, 2014, January 02, 2015], respectively. These results are in agreement with the data of synoptic report since the rainfall amounts was 132.2 mm (belonging to the confidence interval of return levels), on the August 11, 2014 (belonging to the confidence interval of return dates). These predictions of RDs and RLs with their CIs, at reasonable time scales, can help for efficient management of floods and thus, improve early warnings for safety of populations and goods.

2.
World J Diabetes ; 15(6): 1079-1085, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38983813

RESUMEN

Poor fruit and vegetable consumption is one of the 10 major risk factors for mortality. There is a misconception regarding the consumption of dates among patients with diabetes. This manuscript assessed the effects of date consumption on fasting and postprandial blood glucose, glycated hemoglobin, total cholesterol, triglycerides, low-density lipoproteins, high-density lipoproteins, and microbial markers. Four literature databases were searched for relevant articles. Of the 595 studies retrieved, 24 assessed the effects of dates on glycemic control and lipids. Overall, the evidence suggests that dates have a lowering effect on blood glucose. Dates reduce total cholesterol and triglyceride levels and increase high-density lipoprotein levels. Dates also promote the abundance of beneficial gut microbiota. Therefore, patients with diabetes and dyslipidemia can consume dates to reduce their blood glucose, cholesterol, and triglycerides.

3.
Front Plant Sci ; 15: 1399155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911984

RESUMEN

Introduction: The sowing date plays a crucial role in influencing the growth and reproduction of plants, with its specific impact on biomass allocation and allometric growth remaining unclear. Understanding these effects is essential for optimizing agricultural practices and enhancing crop productivity. Methods: To investigate the effects of sowing dates on biomass allocation and allometric growth, a field experiment was conducted with sequential sowings of Fagopyrum esculentum from April 12th to August 11th in 2018. Biomass measurements were taken across various plant organs, and corresponding allocation calculations were made. A detailed analysis of the allometric growth relationship involving organ biomass variations was performed. Results: The study revealed that the accumulation and allocation of organ biomass in buckwheat were significantly impacted by the sowing dates. Delayed planting led to reduced vegetative growth and increased biomass allocation towards reproduction. Allometric parameters such as exponent, constant, and individual size of buckwheat were notably affected by delayed planting. Interestingly, the allometric exponents governing the relationships between reproductive vs. vegetative biomass and belowground vs. aboveground biomass exhibited varying trends across different sowing dates. Discussion: Notably, late sowings resulted in significantly higher reproductive biomass compared to early and middle sowings. These findings highlight the nuanced relationship between plant size and reproductive biomass under different sowing dates, emphasizing the critical role of planting timing in shaping mature plant sizes and reproductive outcomes. The study underscores the importance of considering sowing dates in agricultural practices to optimize plant growth and productivity.

4.
BMC Plant Biol ; 24(1): 510, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844838

RESUMEN

BACKGROUND: Optimum planting date and appropriate fertilizer module are essential facets of chrysanthemum cultivation, to enhance quality yield, and improve soil health. A field-based study was undertaken over multiple growing seasons in 2022 and 2023, where six different planting dates, viz., P1:June 15, P2:June 30, P3:July 15, P4:July 30, P5:August 15 and P6:August 30 and two fertilizer modules, FM1:Jeevamrit @ 30 ml plant-1 and FM2:NPK @ 30 g m-2 were systematically examined using a Randomized Block Design (factorial), replicated thrice. RESULTS: P6 planting resulted in early bud formation (44.03 days) and harvesting stage (90.78 days). Maximum plant height (79.44 cm), plant spread (34.04 cm), cut stem length (68.40 cm), flower diameter (7.83 cm), stem strength (19.38˚), vase life (14.90 days), flowering duration (24.08 days), available soil N (314 kg ha-1), available P (37 kg ha-1), available K (347 kg ha-1), bacterial count (124.87 × 107 cfu g-1 soil), actinomycetes count (60.72 × 102 cfu g-1 soil), fungal count (30.95 × 102 cfu g-1 soil), microbial biomass (48.79 µg g-1 soil), dehydrogenase enzyme (3.64 mg TPF h-1 g-1 soil) and phosphatase enzyme (23.79 mol PNP h-1 g-1 soil) was recorded in P1 planting. Among the fertilization module, minimum days to bud formation (74.94 days) and days to reach the harvesting stage (120.95 days) were recorded with the application of NPK @30 g m-2. However, maximum plant height (60.62 cm), plant spread (23.10 cm), number of cut stems m-2 (43.88), cut stem length (51.34 cm), flower diameter (6.92 cm), stem strength (21.24˚), flowering duration (21.75 days), available soil N (317 kg ha-1), available P (37 kg ha-1) and available K (349 kg ha-1) were also recorded with the application of NPK @300 kg ha-1. Maximum vase life (13.87 days), OC (1.13%), bacterial count (131.65 × 107 cfu g-1 soil), actinomycetes count (60.89 × 102 cfu g-1 soil), fungal count (31.11 × 102 cfu g-1 soil), microbial biomass (51.27 µg g-1 soil), dehydrogenase enzyme (3.77 mg TPF h-1 g-1 soil) and phosphatase enzyme (21.72 mol PNP h-1 g-1 soil) were observed with the application of Jeevamrit @ 30 ml plant-1. CONCLUSION: Early planting (P1) and inorganic fertilization (NPK @ 30 g m-2) resulted in improved yield and soil macronutrient content. The soil microbial population and enzymatic activity were improved with the jeevamrit application. This approach highlights the potential for improved yield and soil health in chrysanthemum cultivation, promoting a more eco-friendly and economically viable agricultural model.


Asunto(s)
Chrysanthemum , Fertilizantes , Microbiología del Suelo , Suelo , Chrysanthemum/crecimiento & desarrollo , Fertilizantes/análisis , Suelo/química , Estaciones del Año , Biomasa
5.
Plants (Basel) ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891286

RESUMEN

To fulfill the growing demand for wheat consumption, it is important to focus on enhancement breeding strategies targeting key parameters such as yield, thousand kernel weight (TKW), quality characteristics including morphological traits, and protein content. These elements are key to the ongoing and future objectives of wheat breeding programs. Prioritizing these factors will effectively help meet the rising demand for wheat, especially given the challenges posed by unpredictable weather patterns. This study evaluated the morphological traits and protein content of 249 winter wheat varieties and advanced lines grown in eleven different environments in Morocco and Spain incorporating three varied sowing dates. The results showed considerable variability in morphological traits and protein content. Significant correlations were observed among various grain traits, with most grain morphological parameters exhibiting negative correlations with protein content. Differences across environments (p ≤ 0.01) in all traits, genotypes, and genotype by environment interaction were significant. A factorial regression analysis revealed significant impacts of environmental conditions on all grain morphological parameters, protein content, and TKW during the three growth stages. The study identified several high-performing and stable genotypes across diverse environments, providing valuable insights for wheat breeding programs such as genotypes 129, 234, 241, and 243. Genome-Wide Association Studies pinpointed 603 significant markers across 11 environments, spread across chromosomes. Among these, 400 markers were linked with at least two traits or observed in at least two different environments. Moreover, twelve marker-trait associations were detected that surpassed the Bonferroni correction threshold. These findings highlight the importance of targeted breeding efforts to enhance wheat quality and adaptability to different environmental conditions.

6.
Heliyon ; 10(5): e27005, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495165

RESUMEN

This paper explores the application of Set-based Design (SBD) in the design of a dates harvesting machine. Dates are a popular fruit with significant economic importance, especially in Saudi Arabia. However, the process of harvesting them is highly labour-intensive, and there is a need for an automated solution to improve efficiency and reduce costs. The study begins with a comprehensive review of the literature on other fruit-harvesting machines. The research then proposes an architectural design of a dates harvesting machine based on the understanding of the typical fruit harvesting machines. The dates harvesting machine design proposed in this study consists of several sub-assemblies. Each sub-assembly is designed as a set of alternatives, with different configurations of components, mechanisms and materials. The understanding of the customer requirements of typical date farms helped to identify the list of values that are essential to design the dates harvesting machine. These values were filtered and analysed using an analytical hierarchy process to define three key value attributes of 'design performance', 'safety' and 'cost'. The SBD approach helped to evaluate all the possible combinations of subsystems to identify the optimal solution that meets the customer's requirements and constraints. The SBD methodology resulted in the generation of 576 alternative design configurations which were aggressively narrowed down to 48 design solutions and then into 4 solutions where the final optimized design was selected using the PUGH matrix. The narrowing down is based on the combination of trade-off curves, solution performance and the identified key-value attributes. The proposed dates harvesting machine design shows great promise in improving the efficiency and sustainability of harvesting dates, and it can be adapted for use in agricultural applications.

7.
PeerJ ; 12: e16984, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426132

RESUMEN

Background: Wheat (Tritium aestivum L.) production is critical for global food security. In recent years, due to climate change and the prolonged growing period of rice varieties, the delayed sowing of wheat has resulted in a loss of grain yield in the area of the middle and lower reaches of the Yangtze River. It is of great significance to screen for natural germplasm resources of wheat that are resistant to late sowing and to explore genetic loci that stably control grain size and yield. Methods: A collection of 327 wheat accessions from diverse sources were subjected to genome-wide association studies using genotyping-by-sequencing. Field trials were conducted under normal, delayed, and seriously delayed sowing conditions for grain length, width, and thousand-grain weight at two sites. Additionally, the additive main effects and multiplicative interaction (AMMI) model was applied to evaluate the stability of thousand-grain weight of 327 accessions across multiple sowing dates. Results: Four wheat germplasm resources have been screened, demonstrating higher stability of thousand-grain weight. A total of 43, 35, and 39 significant MTAs were determined across all chromosomes except for 4D under the three sowing dates, respectively. A total of 10.31% of MTAs that stably affect wheat grain size could be repeatedly identified in at least two sowing dates, with PVE ranging from 0.03% to 38.06%. Among these, six were for GL, three for GW, and one for TGW. There were three novel and stable loci (4A_598189950, 4B_307707920, 2D_622241054) located in conserved regions of the genome, which provide excellent genetic resources for pyramid breeding strategies of superior loci. Our findings offer a theoretical basis for cultivar improvement and marker-assisted selection in wheat breeding practices.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo , Triticum/genética , Fitomejoramiento , Grano Comestible/genética
8.
Foods ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540883

RESUMEN

Underutilized dates are considered as a socioeconomically important fruit for local and global communities, such as Degla-Beida, a common date fruit variety. The aim of this research was to elucidate, for the first time, the efficiency of UV-C light treatment (over different irradiation durations 5, 10, 20, and 40 min) in the enhancement of soluble carbohydrates and phenolic compounds, and to evaluate its effect on the antioxidant capacity. Furthermore, the content of dietary fiber was analyzed: insoluble dietary fiber (11.89 g/100 g); soluble dietary fiber (5.15 g/100 g); and total dietary fiber (17.06 g/100 g). The techno-functional properties were also determined: swelling capacity (3.94 mL/g); oil holding capacity (7.38 g/g); water holding capacity (9.30 g/g); and bulk density (1.81 g/mL). All were carried out to study the potential of exploiting this underutilized fruit for other applications as for feed or food. The results suggest that UV-C technology changes minimally the total water-soluble carbohydrate content; however, this preservation technology can affect the availability of different soluble carbohydrates depending on the irradiation time (IT), increasing the high molecular weight polysaccharides with IT up to 20 min, and some oligosaccharides with IT up to 5 min. The polyphenolic content determined by HPLC-QTOF was increased when the samples were submitted to UV-C reaching the maximum at 20 min (111.62 mg/100 g) and then to decrease in those submitted to IT of 40 min (12.05 mg/100 g). Regarding antioxidant capacity in the UV-C treated samples, FRAP decreased and EC50 on DPPH increased when IT was increased, while ORAC was hardly maintained. In addition, considering UV-C radiation associated with preservation and the studied date fruit as a rich source of dietary fiber with adequate techno-functional properties, this study presents valuable information for its potential use as a new food ingredient.

9.
Zookeys ; 1194: 1-981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523865

RESUMEN

More than 4700 nominal family-group names (including names for fossils and ichnotaxa) are nomenclaturally available in the order Coleoptera. Since each family-group name is based on the concept of its type genus, we argue that the stability of names used for the classification of beetles depends on accurate nomenclatural data for each type genus. Following a review of taxonomic literature, with a focus on works that potentially contain type species designations, we provide a synthesis of nomenclatural data associated with the type genus of each nomenclaturally available family-group name in Coleoptera. For each type genus the author(s), year of publication, and page number are given as well as its current status (i.e., whether treated as valid or not) and current classification. Information about the type species of each type genus and the type species fixation (i.e., fixed originally or subsequently, and if subsequently, by whom) is also given. The original spelling of the family-group name that is based on each type genus is included, with its author(s), year, and stem. We append a list of nomenclaturally available family-group names presented in a classification scheme. Because of the importance of the Principle of Priority in zoological nomenclature, we provide information on the date of publication of the references cited in this work, when known. Several nomenclatural issues emerged during the course of this work. We therefore appeal to the community of coleopterists to submit applications to the International Commission on Zoological Nomenclature (henceforth "Commission") in order to permanently resolve some of the problems outlined here. The following changes of authorship for type genera are implemented here (these changes do not affect the concept of each type genus): CHRYSOMELIDAE: Fulcidax Crotch, 1870 (previously credited to "Clavareau, 1913"); CICINDELIDAE: Euprosopus W.S. MacLeay, 1825 (previously credited to "Dejean, 1825"); COCCINELLIDAE: Alesia Reiche, 1848 (previously credited to "Mulsant, 1850"); CURCULIONIDAE: Arachnopus Boisduval, 1835 (previously credited to "Guérin-Méneville, 1838"); ELATERIDAE: Thylacosternus Gemminger, 1869 (previously credited to "Bonvouloir, 1871"); EUCNEMIDAE: Arrhipis Gemminger, 1869 (previously credited to "Bonvouloir, 1871"), Mesogenus Gemminger, 1869 (previously credited to "Bonvouloir, 1871"); LUCANIDAE: Sinodendron Hellwig, 1791 (previously credited to "Hellwig, 1792"); PASSALIDAE: Neleides Harold, 1868 (previously credited to "Kaup, 1869"), Neleus Harold, 1868 (previously credited to "Kaup, 1869"), Pertinax Harold, 1868 (previously credited to "Kaup, 1869"), Petrejus Harold, 1868 (previously credited to "Kaup, 1869"), Undulifer Harold, 1868 (previously credited to "Kaup, 1869"), Vatinius Harold, 1868 (previously credited to "Kaup, 1869"); PTINIDAE: Mezium Leach, 1819 (previously credited to "Curtis, 1828"); PYROCHROIDAE: Agnathus Germar, 1818 (previously credited to "Germar, 1825"); SCARABAEIDAE: Eucranium Dejean, 1833 (previously "Brullé, 1838"). The following changes of type species were implemented following the discovery of older type species fixations (these changes do not pose a threat to nomenclatural stability): BOLBOCERATIDAE: Bolbocerusbocchus Erichson, 1841 for Bolbelasmus Boucomont, 1911 (previously Bolbocerasgallicum Mulsant, 1842); BUPRESTIDAE: Stigmoderaguerinii Hope, 1843 for Neocuris Saunders, 1868 (previously Anthaxiafortnumi Hope, 1846), Stigmoderaperoni Laporte & Gory, 1837 for Curis Laporte & Gory, 1837 (previously Buprestiscaloptera Boisduval, 1835); CARABIDAE: Carabuselatus Fabricius, 1801 for Molops Bonelli, 1810 (previously Carabusterricola Herbst, 1784 sensu Fabricius, 1792); CERAMBYCIDAE: Prionuspalmatus Fabricius, 1792 for Macrotoma Audinet-Serville, 1832 (previously Prionusserripes Fabricius, 1781); CHRYSOMELIDAE: Donaciaequiseti Fabricius, 1798 for Haemonia Dejean, 1821 (previously Donaciazosterae Fabricius, 1801), Eumolpusruber Latreille, 1807 for Euryope Dalman, 1824 (previously Cryptocephalusrubrifrons Fabricius, 1787), Galerucaaffinis Paykull, 1799 for Psylliodes Latreille, 1829 (previously Chrysomelachrysocephala Linnaeus, 1758); COCCINELLIDAE: Dermestesrufus Herbst, 1783 for Coccidula Kugelann, 1798 (previously Chrysomelascutellata Herbst, 1783); CRYPTOPHAGIDAE: Ipscaricis G.-A. Olivier, 1790 for Telmatophilus Heer, 1841 (previously Cryptophagustyphae Fallén, 1802), Silphaevanescens Marsham, 1802 for Atomaria Stephens, 1829 (previously Dermestesnigripennis Paykull, 1798); CURCULIONIDAE: Bostrichuscinereus Herbst, 1794 for Crypturgus Erichson, 1836 (previously Bostrichuspusillus Gyllenhal, 1813); DERMESTIDAE: Dermestestrifasciatus Fabricius, 1787 for Attagenus Latreille, 1802 (previously Dermestespellio Linnaeus, 1758); ELATERIDAE: Elatersulcatus Fabricius, 1777 for Chalcolepidius Eschscholtz, 1829 (previously Chalcolepidiuszonatus Eschscholtz, 1829); ENDOMYCHIDAE: Endomychusrufitarsis Chevrolat, 1835 for Epipocus Chevrolat, 1836 (previously Endomychustibialis Guérin-Méneville, 1834); EROTYLIDAE: Ipshumeralis Fabricius, 1787 for Dacne Latreille, 1797 (previously Dermestesbipustulatus Thunberg, 1781); EUCNEMIDAE: Fornaxaustrocaledonicus Perroud & Montrouzier, 1865 for Mesogenus Gemminger, 1869 (previously Mesogenusmellyi Bonvouloir, 1871); GLAPHYRIDAE: Melolonthaserratulae Fabricius, 1792 for Glaphyrus Latreille, 1802 (previously Scarabaeusmaurus Linnaeus, 1758); HISTERIDAE: Histerstriatus Forster, 1771 for Onthophilus Leach, 1817 (previously Histersulcatus Moll, 1784); LAMPYRIDAE: Ototretafornicata E. Olivier, 1900 for Ototreta E. Olivier, 1900 (previously Ototretaweyersi E. Olivier, 1900); LUCANIDAE: Lucanuscancroides Fabricius, 1787 for Lissotes Westwood, 1855 (previously Lissotesmenalcas Westwood, 1855); MELANDRYIDAE: Nothusclavipes G.-A. Olivier, 1812 for Nothus G.-A. Olivier, 1812 (previously Nothuspraeustus G.-A. Olivier, 1812); MELYRIDAE: Lagriaater Fabricius, 1787 for Enicopus Stephens, 1830 (previously Dermesteshirtus Linnaeus, 1767); NITIDULIDAE: Sphaeridiumluteum Fabricius, 1787 for Cychramus Kugelann, 1794 (previously Strongylusquadripunctatus Herbst, 1792); OEDEMERIDAE: Helopslaevis Fabricius, 1787 for Ditylus Fischer, 1817 (previously Ditylushelopioides Fischer, 1817 [sic]); PHALACRIDAE: Sphaeridiumaeneum Fabricius, 1792 for Olibrus Erichson, 1845 (previously Sphaeridiumbicolor Fabricius, 1792); RHIPICERIDAE: Sandalusniger Knoch, 1801 for Sandalus Knoch, 1801 (previously Sandaluspetrophya Knoch, 1801); SCARABAEIDAE: Cetoniaclathrata G.-A. Olivier, 1792 for Inca Lepeletier & Audinet-Serville, 1828 (previously Cetoniaynca Weber, 1801); Gnathoceravitticollis W. Kirby, 1825 for Gnathocera W. Kirby, 1825 (previously Gnathoceraimmaculata W. Kirby, 1825); Melolonthavillosula Illiger, 1803 for Chasmatopterus Dejean, 1821 (previously Melolonthahirtula Illiger, 1803); STAPHYLINIDAE: Staphylinuspolitus Linnaeus, 1758 for Philonthus Stephens, 1829 (previously Staphylinussplendens Fabricius, 1792); ZOPHERIDAE: Hispamutica Linnaeus, 1767 for Orthocerus Latreille, 1797 (previously Tenebriohirticornis DeGeer, 1775). The discovery of type species fixations that are older than those currently accepted pose a threat to nomenclatural stability (an application to the Commission is necessary to address each problem): CANTHARIDAE: Malthinus Latreille, 1805, Malthodes Kiesenwetter, 1852; CARABIDAE: Bradycellus Erichson, 1837, Chlaenius Bonelli, 1810, Harpalus Latreille, 1802, Lebia Latreille, 1802, Pheropsophus Solier, 1834, Trechus Clairville, 1806; CERAMBYCIDAE: Callichroma Latreille, 1816, Callidium Fabricius, 1775, Cerasphorus Audinet-Serville, 1834, Dorcadion Dalman, 1817, Leptura Linnaeus, 1758, Mesosa Latreille, 1829, Plectromerus Haldeman, 1847; CHRYSOMELIDAE: Amblycerus Thunberg, 1815, Chaetocnema Stephens, 1831, Chlamys Knoch, 1801, Monomacra Chevrolat, 1836, Phratora Chevrolat, 1836, Stylosomus Suffrian, 1847; COLONIDAE: Colon Herbst, 1797; CURCULIONIDAE: Cryphalus Erichson, 1836, Lepyrus Germar, 1817; ELATERIDAE: Adelocera Latreille, 1829, Beliophorus Eschscholtz, 1829; ENDOMYCHIDAE: Amphisternus Germar, 1843, Dapsa Latreille, 1829; GLAPHYRIDAE: Anthypna Eschscholtz, 1818; HISTERIDAE: Hololepta Paykull, 1811, Trypanaeus Eschscholtz, 1829; LEIODIDAE: Anisotoma Panzer, 1796, Camiarus Sharp, 1878, Choleva Latreille, 1797; LYCIDAE: Calopteron Laporte, 1838, Dictyoptera Latreille, 1829; MELOIDAE: Epicauta Dejean, 1834; NITIDULIDAE: Strongylus Herbst, 1792; SCARABAEIDAE: Anisoplia Schönherr, 1817, Anticheira Eschscholtz, 1818, Cyclocephala Dejean, 1821, Glycyphana Burmeister, 1842, Omaloplia Schönherr, 1817, Oniticellus Dejean, 1821, Parachilia Burmeister, 1842, Xylotrupes Hope, 1837; STAPHYLINIDAE: Batrisus Aubé, 1833, Phloeonomus Heer, 1840, Silpha Linnaeus, 1758; TENEBRIONIDAE: Bolitophagus Illiger, 1798, Mycetochara Guérin-Méneville, 1827. Type species are fixed for the following nominal genera: ANTHRIBIDAE: Decataphanesgracilis Labram & Imhoff, 1840 for Decataphanes Labram & Imhoff, 1840; CARABIDAE: Feroniaerratica Dejean, 1828 for Loxandrus J.L. LeConte, 1853; CERAMBYCIDAE: Tmesisternusoblongus Boisduval, 1835 for Icthyosoma Boisduval, 1835; CHRYSOMELIDAE: Brachydactylaannulipes Pic, 1913 for Pseudocrioceris Pic, 1916, Cassidaviridis Linnaeus, 1758 for Evaspistes Gistel, 1856, Ocnosceliscyanoptera Erichson, 1847 for Ocnoscelis Erichson, 1847, Promecothecapetelii Guérin-Méneville, 1840 for Promecotheca Guérin- Méneville, 1840; CLERIDAE: Attelabusmollis Linnaeus, 1758 for Dendroplanetes Gistel, 1856; CORYLOPHIDAE: Corylophusmarginicollis J.L. LeConte, 1852 for Corylophodes A. Matthews, 1885; CURCULIONIDAE: Hoplorhinusmelanocephalus Chevrolat, 1878 for Hoplorhinus Chevrolat, 1878; SonnetiusbinariusCasey, 1922 for Sonnetius Casey, 1922; ELATERIDAE: Pyrophorusmelanoxanthus Candèze, 1865 for Alampes Champion, 1896; PHYCOSECIDAE: Phycosecislitoralis Pascoe, 1875 for Phycosecis Pascoe, 1875; PTILODACTYLIDAE: Aploglossasallei Guérin-Méneville, 1849 for Aploglossa Guérin-Méneville, 1849, Coloboderaovata Klug, 1837 for Colobodera Klug, 1837; PTINIDAE: Dryophilusanobioides Chevrolat, 1832 for Dryobia Gistel, 1856; SCARABAEIDAE: Achloahelvola Erichson, 1840 for Achloa Erichson, 1840, Camentaobesa Burmeister, 1855 for Camenta Erichson, 1847, Pinotustalaus Erichson, 1847 for Pinotus Erichson, 1847, Psilonychusecklonii Burmeister, 1855 for Psilonychus Burmeister, 1855. New replacement name: CERAMBYCIDAE: Basorus Bouchard & Bousquet, nom. nov. for Sobarus Harold, 1879. New status: CARABIDAE: KRYZHANOVSKIANINI Deuve, 2020, stat. nov. is given the rank of tribe instead of subfamily since our classification uses the rank of subfamily for PAUSSINAE rather than family rank; CERAMBYCIDAE: Amymoma Pascoe, 1866, stat. nov. is used as valid over Neoamymoma Marinoni, 1977, Holopterus Blanchard, 1851, stat. nov. is used as valid over Proholopterus Monné, 2012; CURCULIONIDAE: Phytophilus Schönherr, 1835, stat. nov. is used as valid over the unnecessary new replacement name Synophthalmus Lacordaire, 1863; EUCNEMIDAE: Nematodinus Lea, 1919, stat. nov. is used as valid instead of Arrhipis Gemminger, 1869, which is a junior homonym. Details regarding additional nomenclatural issues that still need to be resolved are included in the entry for each of these type genera: BOSTRICHIDAE: Lyctus Fabricius, 1792; BRENTIDAE: Trachelizus Dejean, 1834; BUPRESTIDAE: Pristiptera Dejean, 1833; CANTHARIDAE: Chauliognathus Hentz, 1830, Telephorus Schäffer, 1766; CARABIDAE: Calathus Bonelli, 1810, Cosnania Dejean, 1821, Dicrochile Guérin-Méneville, 1847, Epactius D.H. Schneider, 1791, Merismoderus Westwood, 1847, Polyhirma Chaudoir, 1850, Solenogenys Westwood, 1860, Zabrus Clairville, 1806; CERAMBYCIDAE: Ancita J. Thomson, 1864, Compsocerus Audinet-Serville, 1834, Dorcadodium Gistel, 1856, Glenea Newman, 1842; Hesperophanes Dejean, 1835, Neoclytus J. Thomson, 1860, Phymasterna Laporte, 1840, Tetrops Stephens, 1829, Zygocera Erichson, 1842; CHRYSOMELIDAE: Acanthoscelides Schilsky, 1905, Corynodes Hope, 1841, Edusella Chapuis, 1874; Hemisphaerota Chevrolat, 1836; Physonota Boheman, 1854, Porphyraspis Hope, 1841; CLERIDAE: Dermestoides Schäffer, 1777; COCCINELLIDAE: Hippodamia Chevrolat, 1836, Myzia Mulsant, 1846, Platynaspis L. Redtenbacher, 1843; CURCULIONIDAE: Coeliodes Schönherr, 1837, Cryptoderma Ritsema, 1885, Deporaus Leach, 1819, Epistrophus Kirsch, 1869, Geonemus Schönherr, 1833, Hylastes Erichson, 1836; DYTISCIDAE: Deronectes Sharp, 1882, Platynectes Régimbart, 1879; EUCNEMIDAE: Dirhagus Latreille, 1834; HYBOSORIDAE: Ceratocanthus A. White, 1842; HYDROPHILIDAE: Cyclonotum Erichson, 1837; LAMPYRIDAE: Luciola Laporte, 1833; LEIODIDAE: Ptomaphagus Hellwig, 1795; LUCANIDAE: Leptinopterus Hope, 1838; LYCIDAE: Cladophorus Guérin-Méneville, 1830, Mimolibnetis Kazantsev, 2000; MELOIDAE: Mylabris Fabricius, 1775; NITIDULIDAE: Meligethes Stephens, 1829; PTILODACTYLIDAE: Daemon Laporte, 1838; SCARABAEIDAE: Allidiostoma Arrow, 1940, Heterochelus Burmeister, 1844, Liatongus Reitter, 1892, Lomaptera Gory & Percheron, 1833, Megaceras Hope, 1837, Stenotarsia Burmeister, 1842; STAPHYLINIDAE: Actocharis Fauvel, 1871, Aleochara Gravenhorst, 1802; STENOTRACHELIDAE: Stenotrachelus Berthold, 1827; TENEBRIONIDAE: Cryptochile Latreille, 1828, Heliopates Dejean, 1834, Helops Fabricius, 1775. First Reviser actions deciding the correct original spelling: CARABIDAE: Aristochroodes Marcilhac, 1993 (not Aritochroodes); CERAMBYCIDAE: Dorcadodium Gistel, 1856 (not Dorcadodion), EVODININI Zamoroka, 2022 (not EVODINIINI); CHRYSOMELIDAE: Caryopemon Jekel, 1855 (not Carpopemon), Decarthrocera Laboissière, 1937 (not Decarthrocerina); CICINDELIDAE: Odontocheila Laporte, 1834 (not Odontacheila); CLERIDAE: CORMODINA Bartlett, 2021 (not CORMODIINA), Orthopleura Spinola, 1845 (not Orthoplevra, not Orthopleuva); CURCULIONIDAE: Arachnobas Boisduval, 1835 (not Arachnopus), Palaeocryptorhynchus Poinar, 2009 (not Palaeocryptorhynus); DYTISCIDAE: Ambarticus Yang et al., 2019 and AMBARTICINI Yang et al., 2019 (not Ambraticus, not AMBRATICINI); LAMPYRIDAE: Megalophthalmus G.R. Gray, 1831 (not Megolophthalmus, not Megalopthalmus); SCARABAEIDAE: Mentophilus Laporte, 1840 (not Mintophilus, not Minthophilus), Pseudadoretusdilutellus Semenov, 1889 (not P.ditutellus). While the correct identification of the type species is assumed, in some cases evidence suggests that species were misidentified when they were fixed as the type of a particular nominal genus. Following the requirements of Article 70.3.2 of the International Code of Zoological Nomenclature we hereby fix the following type species (which in each case is the taxonomic species actually involved in the misidentification): ATTELABIDAE: Rhynchitescavifrons Gyllenhal, 1833 for Lasiorhynchites Jekel, 1860; BOSTRICHIDAE: Ligniperdaterebrans Pallas, 1772 for Apate Fabricius, 1775; BRENTIDAE: Ceocephalusappendiculatus Boheman, 1833 for Uroptera Berthold, 1827; BUPRESTIDAE: Buprestisundecimmaculata Herbst, 1784 for Ptosima Dejean, 1833; CARABIDAE: Amaralunicollis Schiødte, 1837 for Amara Bonelli, 1810, Buprestisconnexus Geoffroy, 1785 for Polistichus Bonelli, 1810, Carabusatrorufus Strøm, 1768 for Patrobus Dejean, 1821, Carabusgigas Creutzer, 1799 for Procerus Dejean, 1821, Carabusteutonus Schrank, 1781 for Stenolophus Dejean, 1821, Carenumbonellii Westwood, 1842 for Carenum Bonelli, 1813, Scaritespicipes G.-A. Olivier, 1795 for Acinopus Dejean, 1821, Trigonotomaindica Brullé, 1834 for Trigonotoma Dejean, 1828; CERAMBYCIDAE: Cerambyxlusitanus Linnaeus, 1767 for Exocentrus Dejean, 1835, Clytussupernotatus Say, 1824 for Psenocerus J.L. LeConte, 1852; CICINDELIDAE: Ctenostomajekelii Chevrolat, 1858 for Ctenostoma Klug, 1821; CURCULIONIDAE: Cnemogonuslecontei Dietz, 1896 for Cnemogonus J.L. LeConte, 1876; Phloeophagusturbatus Schönherr, 1845 for Phloeophagus Schönherr, 1838; GEOTRUPIDAE: Lucanusapterus Laxmann, 1770 for Lethrus Scopoli, 1777; HISTERIDAE: Histerrugiceps Duftschmid, 1805 for Hypocaccus C.G. Thomson, 1867; HYBOSORIDAE: Hybosorusilligeri Reiche, 1853 for Hybosorus W.S. MacLeay, 1819; HYDROPHILIDAE: Hydrophilusmelanocephalus G.-A. Olivier, 1793 for Enochrus C.G. Thomson, 1859; MYCETAEIDAE: Dermestessubterraneus Fabricius, 1801 for Mycetaea Stephens, 1829; SCARABAEIDAE: Aulaciumcarinatum Reiche, 1841 for Mentophilus Laporte, 1840, Phanaeusvindex W.S. MacLeay, 1819 for Phanaeus W.S. MacLeay, 1819, Ptinusgermanus Linnaeus, 1767 for Rhyssemus Mulsant, 1842, Scarabaeuslatipes Guérin-Méneville, 1838 for Cheiroplatys Hope, 1837; STAPHYLINIDAE: Scydmaenustarsatus P.W.J. Müller & Kunze, 1822 for Scydmaenus Latreille, 1802. New synonyms: CERAMBYCIDAE: CARILIINI Zamoroka, 2022, syn. nov. of ACMAEOPINI Della Beffa, 1915, DOLOCERINI Özdikmen, 2016, syn. nov. of BRACHYPTEROMINI Sama, 2008, PELOSSINI Tavakilian, 2013, syn. nov. of LYGRINI Sama, 2008, PROHOLOPTERINI Monné, 2012, syn. nov. of HOLOPTERINI Lacordaire, 1868.

10.
Foods ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38397501

RESUMEN

A milk drink flavored with date syrup produced at a lab scale level was evaluated. The production process of date syrup involves a sequence of essential unit operations, commencing with the extraction, filtration, and concentration processes from two cultivars: Sukkary and Khlass. Date syrup was then mixed with cow's and camel's milk at four percentages to form a nutritious, natural, sweet, and energy-rich milk drink. The sensory, physical, and chemical characteristics of the milk drinks flavored with date syrup were examined. The objective of this work was to measure the physiochemical properties of date fruits and milk drinks flavored with date syrup, and then to evaluate the physical properties of milk drinks utilizing non-destructive visible-near-infrared spectra (VIS-NIR). The study assessed the characteristics of the milk drink enhanced with date syrup by employing VIS-NIR spectra and utilizing a partial least-square regression (PLSR) and artificial neural network (ANN) analysis. The VIS-NIR spectra proved to be highly effective in estimating the physiochemical attributes of the flavored milk drink. The ANN model outperformed the PLSR model in this context. RMSECV is considered a more reliable indicator of a model's future predictive performance compared to RMSEC, and the R2 value ranged between 0.946 and 0.989. Consequently, non-destructive VIS-NIR technology demonstrates significant promise for accurately predicting and contributing to the entire production process of the product's properties examined.

11.
Glob Chang Biol ; 30(1): e17118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273573

RESUMEN

Climate change has had a significant impact on the seasonal transition dates of Arctic tundra ecosystems, causing diverse variations between distinct land surface classes. However, the combined effect of multiple controls as well as their individual effects on these dates remains unclear at various scales and across diverse land surface classes. Here we quantified spatiotemporal variations of three seasonal transition dates (start of spring, maximum normalized difference vegetation index (NDVImax ) day, end of fall) for five dominating land surface classes in the ice-free Greenland. Using a distributed snow model, structural equation modeling, and a random forest model, based on ground observations and remote sensing data, we assessed the indirect and direct effects of climate, snow, and terrain on seasonal transition dates. We then presented new projections of likely changes in seasonal transition dates under six future climate scenarios. The coupled climate, snow cover, and terrain conditions explained up to 61% of seasonal transition dates across different land surface classes. Snow ending day played a crucial role in the start of spring and timing of NDVImax . A warmer June and a decline in wind could advance the NDVImax day. Increased precipitation and temperature during July-August are the most important for delaying the end of fall. We projected that a 1-4.5°C increase in temperature and a 5%-20% increase in precipitation would lengthen the spring-to-fall period for all five land surface classes by 2050, thus the current order of spring-to-fall lengths for the five land surface classes could undergo notable changes. Tall shrubs and fens would have a longer spring-to-fall period under the warmest and wettest scenario, suggesting a competitive advantage for these vegetation communities. This study's results illustrate controls on seasonal transition dates and portend potential changes in vegetation composition in the Arctic under climate change.


Asunto(s)
Ecosistema , Tundra , Groenlandia , Estaciones del Año , Regiones Árticas , Nieve , Cambio Climático
12.
Foods ; 13(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275712

RESUMEN

Saudi Arabia is a prominent producer of dates, producing 1.6 million tons annually. There is a need to evaluate the physical properties and quality of fruits non-destructively and then modeled and predict them throughout the storage period. The aim of the current study was to generate a quality index (Qi) and visible-near-infrared spectra (VIS-NIR) models non-destructively to predict properties of Barhi dates including objective and sensory evaluations. A total of 1000 Barhi fruits were sorted into three stages of maturation, ranging from 80 to 100% yellowish. The physical properties (hardness, color, TSS, pH, and sensory evaluations) of Barhi dates were measured and modeled with Qi based on VIS-NIR of fresh Barhi fruits and during storage in ambient (25 °C), cold (1 °C), and CA (1 °C with 5%:5% O2:CO2, 85% RH) conditions for up to 3 months. The prediction of Qi was non-destructively based on VIS-NIR utilizing PLSR and ANN data analysis. The results showed that the shelf-life of stored Barhi fruits were 20, 40, and 120 days corresponding to 25 °C, cold (1 °C), and CA, respectively. It was found that VIS-NIR spectroscopy was helpful in estimating the Qi of Barhi fruits for PLSR and ANN data analysis, respectively, in calibration with an R2 of 0.793 and 0.912 and RMSEC of 0.110 and 0.308 and cross-validation with an R2 of 0.783 and 0.912 and RMSEC of 0.298 and 0.308. The VIS-NIR spectrum has proven to be an effective method for the evaluation of the Qi of Barhi fruits and their physical properties throughout the supply chain in the handling, processing, transportation, storage and retail sectors. It was found that ANN is more suitable than PLSR analysis.

13.
Heliyon ; 9(11): e22425, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38053903

RESUMEN

Egyptian Siwi dates dried using the open sun drying is exposed to different contaminants. So, the current study aims to use the closed solar dryer to improve Siwi date safety. The impact of washing and closed solar drying on the levels of microbial load, aflatoxins and heavy metals in Egyptian Siwi dates (ESD), in comparison to traditional open sun drying methods were examined. Two different drying techniques were employed to dry 300 kg of ESD. The microbial load was assessed following the two drying procedures. The levels of aflatoxins and heavy metals were analyzed using High-performance liquid chromatography (HPLC) and Inductively Coupled Plasma (ICP) techniques, respectively, after both drying methods. Additionally, the influence of storage time on the microbial load of the ESD was also evaluated using standard methods. The findings of the current study demonstrated that the closed solar drying significantly reduced the total bacterial and fungal counts by 96 % and 93 %, respectively, when compared to open sun-drying. No aflatoxins were detected in both fresh Siwi dates and Siwi dates dried using closed solar drying. However, after open sun drying, two aflatoxins; aflatoxin B1 (AFB1) and aflatoxin G1 (AFG1), were detected in the ESD, with concentrations of 0.95 and 0.23 µg kg-1, respectively. The closed solar drying significantly decreased the levels of lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), chromium (Cr), zinc (Zn), manganese (Mn), and iron (Fe) in the dried dates by 96 %, 94 %, 48 %, 71 %, 64 %, 4 %, 26 %, and 7 %, respectively, when compared to open sun drying. The stored Siwi dates that was exposed to the open sun drying showed a higher increase in bacterial (4.86 log CFU/g) and fungal (4.46 log CFU/g) counts. However, the stored Siwi dates that was exposed to the closed solar dryer showed a lower increase in bacterial (3.21 log CFU/g) and fungal (2.51 log CFU/g) counts. So, the duration of storage significantly impacted the microbial loads of the closed solar dried dates as compared to open sun drying. Overall, closed solar drying reduced the levels of investigated contaminants and extended the shelf life of ESD, thereby enhancing their safety for human consumption.

14.
Heliyon ; 9(11): e21660, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027714

RESUMEN

Maize is one of the most important staple food crops for most low-income households in the Southern African region. Erratic and inconsistent rainfall distribution across maize-growing areas is a major threat to maize production. Late rains in recent years have forced farmers to plant later than the optimal planting dates, leading to poor maize quality being reported by industry, which raised the question of the influence of later planting dates on grain yield and quality traits of maize. Three yellow and three white maize hybrids were evaluated at three planting dates in three different production environments for three consecutive seasons using a randomized complete block design with three replications. The second and third planting dates caused a significant yield decrease of 23.37 % and 53.73 % from the first planting date across environments, respectively. Planting date three was associated with decreased grain yield, starch content, and increased protein but no significant change in fat and fiber content. Some hybrids yielded relatively well at all planting dates. In conclusion, the early planting date was the most suitable for maize grain yield and starch production in the maize-growing areas of the country. However, planting in January should be avoided at all costs, as it leads to very low yield and poor grain quality.

15.
Pathogens ; 12(11)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003833

RESUMEN

Candidiasis, caused by opportunistic fungal pathogens of the Candida genus, poses a significant threat to immunocompromised individuals. Natural compounds derived from medicinal plants have gained attention as potential sources of anti-fungal agents. Ajwa dates (Phoenix dactylifera L.) have been recognized for their diverse phytochemical composition and therapeutic potential. In this study, we employed a multi-faceted approach to explore the anti-candidiasis potential of Ajwa dates' phytochemicals. Utilizing network pharmacology, we constructed an interaction network to elucidate the intricate relationships between Ajwa dates phytoconstituents and the Candida-associated molecular targets of humans. Our analysis revealed key nodes in the network (STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF and PPARG), suggesting the potential modulation of several crucial processes (the regulation of the response to a cytokine stimulus, regulation of the inflammatory response, positive regulation of cytokine production, cellular response to external stimulus, etc.) and fungal pathways (Th17 cell differentiation, the Toll-like receptor signaling pathway, the C-type lectin receptor signaling pathway and necroptosis). To validate these findings, molecular docking studies were conducted, revealing the binding affinities of the phytochemicals towards selected Candida protein targets of humans (ALB-rutin (-9.7 kJ/mol), STAT1-rutin (-9.2 kJ/mol), STAT3-isoquercetin (-8.7 kJ/mol), IL2-ß-carotene (-8.5 kJ/mol), CASP1-ß-carotene (-8.2 kJ/mol), TP53-isoquercetin (-8.8 kJ/mol), PPARG-luteolin (-8.3 kJ/mol), TNF-ßcarotene (-7.7 kJ/mol), TLR4-rutin (-7.4 kJ/mol) and PTPRC-rutin (-7.0 kJ/mol)). Furthermore, molecular dynamics simulations of rutin-ALB and rutin-STAT1 complex were performed to gain insights into the stability and dynamics of the identified ligand-target complexes over time. Overall, the results not only contribute to the understanding of the molecular interactions underlying the anti-fungal potential of specific phytochemicals of Ajwa dates in humans but also provide a rational basis for the development of novel therapeutic strategies against candidiasis in humans. This study underscores the significance of network pharmacology, molecular docking and dynamics simulations in accelerating the discovery of natural products as effective anti-fungal agents. However, further experimental validation of the identified compounds is warranted to translate these findings into practical therapeutic applications.

16.
Food Chem X ; 19: 100754, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780278

RESUMEN

Acoustic system and machine vision were used to evaluate the effects of different harvest dates on the quality and sensory attributes of exotic apple varieties of North Western Himalayan. Gala Redlum (V1) was harvested at 110 (H1), 120 (H2) and 130 (H3) Days from Full Bloom (DFFB); Red Velox (V2) and Super Chief (V3) were harvested at 130 (H1), 140 (H2) and 150 (H3) DFFB. Highest acoustic coefficient (21.13) and firmness (20.72 lbs) recorded at first harvest date (H1) decreased significantly (p ≤0.05) (19.86 to 17.90 lbs) at second harvest (H2) and (17.77 to 16.80 lbs) at third harvest date. Highest starch iodine rating (3.72); anthocyanin content (24.81 mg/100 g); total soluble solids (12.10 %); total sugars (8.75 %) were recorded at H3 in all the varieties. For Gala Redlum (V1) 130 DFFB and for Red Velox (V2) and Super Chief (V3) 150 DFFB were predicted as suitable harvesting dates for table consumption.

17.
Heliyon ; 9(9): e19583, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809817

RESUMEN

The present study aimed to investigate the application of the ohmic heating (OH) technique in the production of date syrup from the date fruit of the Sukkary variety at different electric field strengths (EFS) (9, 10, and 11 V/cm). The results were compared to the conventional heating method (CH). The response surface methodology was used to optimize yield. The results showed that the time to reach the boiling point of dates and water mixture using OH was less than the CH by 80% for extracting and 900% for evaporation. In addition, the productivity of date syrup using OH at EFS of 11 V/cm was higher than the CH by 86.11%. There is no significant effect between OH at EFS of 11 V/cm and CH in moisture content, refractive index, density, TSS, and viscosity. The optimum level of EFS was 11.5 V/cm, which gave a higher yield (64.93%). OH, save consumed power and cost. The OH gave the highest scores of sensory characteristics compared to CH. Total sugars, monosaccharides, and ketone monosaccharides were detected in the date syrup, and the result was positive, while the quintuple sugars and multiple sugars were negative for all treatments. The OH reduced the cost by 85.78% compared with CH.

18.
Anat Cell Biol ; 56(4): 538-551, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37696756

RESUMEN

Exposure to environmental pollutants such as carbon tetrachloride (CCL4) causes liver damage. This study aimed to compare the ameliorative activity of the dates flesh extract (DFE) and selenium-nanoparticles (SeNPs) on CCL4-induced hepatotoxicity and if DFE could be a useful alternative supplement. Twenty-four male albino rats were enrolled and randomly divided into four equal groups (6 rats in each group): control group received only basal diet with no medications. Group II received CCL4 in a dose of 0.5 mg/kg intraperitoneal injection twice weekly for four weeks. Group III rats were pretreated with SeNPs in a dose of 2.5 mg/kg once a day orally three times/wk for four weeks alone then combined with the previously described dose of CCL4 for another four weeks. Group IV rats were pretreated with DFE in a dose of 8 ml of the aqueous extract/kg/d orally for four weeks alone then combined with the previously described dose of CCL4 for another four weeks. The liver damage was assessed by estimation of plasma concentration of albumin and enzymes activities of alanine aminotransferase and tissue genes expression. Liver oxidation levels were assessed by measuring the tissue concentration of the malondialdehyde, superoxide dismutase, and the total glutathione. Additionally, inflammatory mediators tumour necrosis factor--α and interleukin-6 were estimated. Detecting the liver's cellular structural damage was done by histopathological and immunohistochemical examination. This study suggests that CCL4-induced liver damage in rats can be protected by administration whether the costly SeNPs or the economical DFE.

19.
Plants (Basel) ; 12(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687331

RESUMEN

Due to the diversity of Echinochloa species and the limited understanding of their damage processes in rice fields, clarifying the biological properties of distinct species could help create a foundation for effective control techniques. Pot experiments and field competition trials were conducted using eight Echinochloa species to elucidate their biological differences and assess their varying levels of negative impact on rice. The survey outcomes showed that E. oryzoides had the highest 1000-grain weight (3.12 g) while E. colona had the lowest (0.90 g). The largest grain number per spikelet found in E. glabrescens (940) was 3.4 times greater than that in E. oryzoides (277). Different species responded variably to changes in temperature and photoperiod. Except for E. caudate, all Echinochloa species exhibited a shortened growth period with the delay of the sowing date. Under field competitive conditions, all Echinochloa species exhibited significantly greater net photosynthetic rates than rice, with E. crusgalli exhibiting the highest photosynthetic capacity. Moreover, in this resource-limited setting, barnyardgrass species had a decrease in tiller formation and panicle initiation but a significant increase in plant height. These findings contribute valuable insights into the biological characteristics of barnyardgrass populations and provide guidance for implementing effective control measures in rice fields.

20.
J Adv Pharm Technol Res ; 14(3): 161-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692010

RESUMEN

Thermal burns produce tissue damage, which eliminates the protective role of tissue. Due to the extensive tissue damage from severe burns, an overactive immune response occurs. Furthermore, this raises the possibility of getting sepsis, a condition in which a bacterial infection spreads throughout the body rather than only in the area of the injury or localized infection. To determine the compounds of Ajwa dates have the potential as an anti-inflammatory and antibacterial agent in infectious thermal burns. The research method used the Preferred Reporting Items for Systematic Review and Meta-Analyses guideline. Various references were collected from the online database Google Scholar and PubMed including reports, journals, and all references mostly published no more than the past 10 years. This systematic review revealed 16 research articles that were pertinent. Polyphenolic substances such as flavonoids, glycosides, and phenolic acids were found in ajwa dates. Specified polyphenol chemicals have the ability to interact with one or more immune cell receptors, moving intracellular messages and influencing the host's immunological response. Ajwa dates' polyphenol acts as an anti-inflammatory agent in severe burns by inhibiting the expression of pathogen-associated molecular pattern receptors, controlling transcription factors, and changing the phenotype of macrophage cells, among other ways. The bacterial activity and immune response regulation of Ajwa dates, on the other hand, also serve as an antibacterial agent directly. The polyphenol compounds in Ajwa dates have the potential to operate as an anti-inflammatory and antibacterial agent in infected thermal burns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA