Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Sci Rep ; 14(1): 17968, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095527

RESUMEN

As Europe integrates more renewable energy resources, notably offshore wind power, into its super meshed grid, the demand for reliable long-distance High Voltage Direct Current (HVDC) transmission systems has surged. This paper addresses the intricacies of HVDC systems built upon Modular Multi-Level Converters (MMCs), especially concerning the rapid rise of DC fault currents. We propose a novel fault identification and classification for DC transmission lines only by employing Long Short-Term Memory (LSTM) networks integrated with Discrete Wavelet Transform (DWT) for feature extraction. Our LSTM-based algorithm operates effectively under challenging environmental conditions, ensuring high fault resistance detection. A unique three-level relay system with multiple time windows (1 ms, 1.5 ms, and 2 ms) ensures accurate fault detection over large distances. Bayesian Optimization is employed for hyperparameter tuning, streamlining the model's training process. The study shows that our proposed framework exhibits 100% resilience against external faults and disturbances, achieving an average recognition accuracy rate of 99.04% in diverse testing scenarios. Unlike traditional schemes that rely on multiple manual thresholds, our approach utilizes a single intelligently tuned model to detect faults up to 480 ohms, enhancing the efficiency and robustness of DC grid protection.

2.
Diagnostics (Basel) ; 14(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125495

RESUMEN

In recent years, electroencephalography (EEG) has been investigated for identifying brain disorders. This technique involves placing multiple electrodes (channels) on the scalp to measure the brain's activities. This study focuses on accurately detecting mild cognitive impairment (MCI) from the recorded EEG signals. To achieve this, this study first introduced discrete wavelet transform (DWT)-based approaches to generate reliable biomarkers for MCI. These approaches decompose each channel's signal using DWT into a set of distinct frequency band signals, then extract features using a non-linear measure such as band power, energy, or entropy. Various machine learning approaches then classify the generated features. We investigated these methods on EEGs recorded using 19 channels from 29 MCI patients and 32 healthy subjects. In the second step, the study explored the possibility of decreasing the number of EEG channels while preserving, or even enhancing, classification accuracy. We employed multi-objective optimization techniques, such as the non-dominated sorting genetic algorithm (NSGA) and particle swarm optimization (PSO), to achieve this. The results show that the generated DWT-based features resulted in high full-channel classification accuracy scores. Furthermore, selecting fewer channels carefully leads to better accuracy scores. For instance, with a DWT-based approach, the full-channel accuracy achieved was 99.84%. With only four channels selected by NSGA-II, NSGA-III, or PSO, the accuracy increased to 99.97%. Furthermore, NSGA-II selects five channels, achieving an accuracy of 100%. The results show that the suggested DWT-based approaches are promising to detect MCI, and picking the most useful EEG channels makes the accuracy even higher. The use of a small number of electrodes paves the way for EEG-based diagnosis in clinical practice.

3.
Heliyon ; 10(13): e33848, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040348

RESUMEN

Objective: Public health surveillance is an important aspect of outbreak early warning based on prediction models. The present study compares a hybrid model based on discrete wavelet transform (DWT) and ARIMA (Autoregressive Integrated Moving Average) for predicting incidence cases due to COVID-19. Methods: In the current cross-sectional stuady based on time-series data, the incidence data for confirmed daily cases of COVID-19 from February 26, 2019, to April 25, 2022, were used. A hybrid model based on DWT and ARIMA and a pure ARIMA model were used to predict the trend. All analyzes were performed by MATLAB 2018, stata 2015, and Excel 2013 computer software. Results: Compared to the ARIMA model, the prediction results of the hybrid model were closer to the actual number of incident cases. The correlation between predicted values by the hybrid model with real data was higher than the correlation between predicted values by the ARIMA model with actual data. Conclusions: Discreet Wavelet decomposition of the dataset was combined with an ARIMA model and showed better performance in predicting the future trend.

4.
Sci Rep ; 14(1): 15087, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956261

RESUMEN

The Electrocardiogram (ECG) records are crucial for predicting heart diseases and evaluating patient's health conditions. ECG signals provide essential peak values that reflect reliable health information. Analyzing ECG signals is a fundamental technique for computerized prediction with advancements in Very Large-Scale Integration (VLSI) technology and significantly impacts in biomedical signal processing. VLSI advancements focus on high-speed circuit functionality while minimizing power consumption and area occupancy. In ECG signal denoising, digital filters like Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) are commonly used. The FIR filters are preferred for their higher-order performance and stability over IIR filters, especially in real-time applications. The Modified FIR (MFIR) blocks were reconstructed using the optimized adder-multiplier block for better noise reduction performance. The MIT-BIT database is used as reference where the noises are filtered by the MFIR based on Optimized Kogge Stone Adder (OKSA). Features are extracted and analyzed using Discrete wavelet transform (DWT) and Cross Correlation (CC). At this modern era, Hybrid methods of Machine Learning (HMLM) methods are preferred because of their combined performance which is better than non-fused methods. The accuracy of the Hybrid Neural Network (HNN) model reached 92.3%, surpassing other models such as Generalized Sequential Neural Networks (GSNN), Artificial Neural Networks (ANN), Support Vector Machine with linear kernel (SVM linear), and Support Vector Machine with Radial Basis Function kernel (SVM RBF) by margins of 3.3%, 5.3%, 23.3%, and 24.3%, respectively. While the precision of the HNN is 91.1%, it was slightly lower than GSNN and ANN but higher than both SVM linear and SVM -RBF. The HNN with various features are incorporated to improve the ECG classification. The accuracy of the HNN is switched to 95.99% when the DWT and CC are combined. Also, it improvises other parameters such as precision 93.88%, recall is 0.94, F1 score is 0.88, Kappa is 0.89, kurtosis is 1.54, skewness is 1.52 and error rate 0.076. These parameters are higher than recently developed models whose algorithms and methods accuracy is more than 90%.


Asunto(s)
Electrocardiografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Electrocardiografía/métodos , Humanos , Algoritmos , Análisis de Ondículas , Aprendizaje Automático
5.
Sci Total Environ ; 946: 174271, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38925376

RESUMEN

Fleet electrification is considered to be an important measure for reducing carbon emissions in the road transport industry. Considering the heterogeneity of the NEV market penetration and the vehicle types in different provinces, how to design targeted and time-sequenced road transport decarbonisation reduction strategies has become a key issue that needs to be discussed urgently. In this study, the NEVs ownership in China's 31 provinces is used as an intermediate variable. Considering the process of energy transition and changes in vehicle structure, a two-layer scenario framework that combines Shared Socioeconomic Pathways scenarios and model structure was developed to predict carbon emissions. This study firstly analyzes the electrification process and carbon emission reduction potential of provincial road transport industry by region, vehicle type and stage. The potential for reducing carbon emissions was determined under benchmark, transition, and electrification scenarios. The results indicate that the Pearson Correlation Coefficient-Discrete Wavelet Transform-Bidirectional Long Short-term Memory prediction model has an mean absolute percentage error of 8.583 and an R-squared of 0.975. China's road transportation industry total carbon emissions will reach its peak as early as 2027, due to the rapid implementation of renewable energy and fleet electrification. Shanghai, Jiangsu, Shandong, Henan, and Guangdong have set carbon peak targets that can be achieved faster with the transition plan for new energy vehicles to replace fossil fuel vehicles. This paper proposes a timing-responsive deep decarbonization path and policy recommendations for China's road transport industry in sub provincial and time-series settings.

6.
Phys Med Biol ; 69(11)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38593830

RESUMEN

Objective.Automatic medical image segmentation is crucial for accurately isolating target tissue areas in the image from background tissues, facilitating precise diagnoses and procedures. While the proliferation of publicly available clinical datasets led to the development of deep learning-based medical image segmentation methods, a generalized, accurate, robust, and reliable approach across diverse imaging modalities remains elusive.Approach.This paper proposes a novel high-resolution parallel generative adversarial network (pGAN)-based generalized deep learning method for automatic segmentation of medical images from diverse imaging modalities. The proposed method showcases better performance and generalizability by incorporating novel components such as partial hybrid transfer learning, discrete wavelet transform (DWT)-based multilayer and multiresolution feature fusion in the encoder, and a dual mode attention gate in the decoder of the multi-resolution U-Net-based GAN. With multi-objective adversarial training loss functions including a unique reciprocal loss for enforcing cooperative learning inpGANs, it further enhances the robustness and accuracy of the segmentation map.Main results.Experimental evaluations conducted on nine diverse publicly available medical image segmentation datasets, including PhysioNet ICH, BUSI, CVC-ClinicDB, MoNuSeg, GLAS, ISIC-2018, DRIVE, Montgomery, and PROMISE12, demonstrate the proposed method's superior performance. The proposed method achieves mean F1 scores of 79.53%, 88.68%, 82.50%, 93.25%, 90.40%, 94.19%, 81.65%, 98.48%, and 90.79%, respectively, on the above datasets, surpass state-of-the-art segmentation methods. Furthermore, our proposed method demonstrates robust multi-domain segmentation capabilities, exhibiting consistent and reliable performance. The assessment of the model's proficiency in accurately identifying small details indicates that the high-resolution generalized medical image segmentation network (Hi-gMISnet) is more precise in segmenting even when the target area is very small.Significance.The proposed method provides robust and reliable segmentation performance on medical images, and thus it has the potential to be used in a clinical setting for the diagnosis of patients.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Análisis de Ondículas , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Aprendizaje Profundo
7.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38676170

RESUMEN

The Permanent Magnet Synchronous Motor (PMSM) is the power source maintaining the stable and efficient operation of various pieces of equipment; hence, its reliability is crucial to the safety of public equipment. Convolutional Neural Network (CNN) models face challenges in extracting features from PMSM current data. A new Discrete Wavelet Transform Convolutional Neural Networks (DW-CNN) feature with fusion weight updating Long Short-Term Memory (LSTM) anomaly detection is proposed in this paper. This approach combines Discrete Wavelet Transform (DWT) with high and low-frequency separation processing and LSTM. The anomaly detection method adopts DWT and CNN by separating high and low-frequency processing. Moreover, this method combines the hybrid attention mechanism to extract the multi-current signal features and detects anomalies based on weight updating the LSTM network. Experiments on the motor bearing real fault dataset and the PMSM stator fault dataset prove the method's strong capability in fusing current features and detecting anomalies.

8.
Front Bioeng Biotechnol ; 12: 1344239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481575

RESUMEN

In this paper, we present a quantitative assessment of muscle fatigue using surface electromyography (sEMG), a widely recognized method that is conducted through various analytical approaches, including analysis of spectral and time-frequency distributions. Existing research in this field has demonstrated considerable variability in the computational methods used. Although some studies highlight the efficacy of wavelet analysis in dynamic motion, few offer a comprehensive method for determining fatigue and applying it to specific movements. Previous research has focused primarily on discerning differences based on sport type or gender, with a notable absence of studies that presented results for quantifying fatigue during exercise with rowing ergometers. Developing on our previous work, where we introduced a method for determining muscle fatigue through wavelet analysis, considering biomechanical aspects of limb position changes, this current article serves as a continuation. Our study refines the research approach for a selected group, focusing on fatigue determination using the previously established method. The results obtained confirm the effectiveness of DWT analysis in assessing muscle fatigue, as evidenced by the achievement of negative values of the regression coefficients of Median Frequency (MDF) during exercises performed to maximal fatigue. Furthermore, it has been confirmed that the homogeneity of the group and, in the case of the examined group, the results previously achieved or lower limb strength do not have an impact on the results. Finally, we discuss the main limitations of our study and outline the subsequent steps of our investigation, providing valuable information for future investigations in this field.

9.
Med Biol Eng Comput ; 62(5): 1571-1588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311647

RESUMEN

This study introduces an electroencephalography (EEG)-based dataset to analyze lie detection. Various analyses or detections can be performed using EEG signals. Lie detection using EEG data has recently become a significant topic. In every aspect of life, people find the need to tell lies to each other. While lies told daily may not have significant societal impacts, lie detection becomes crucial in legal, security, job interviews, or situations that could affect the community. This study aims to obtain EEG signals for lie detection, create a dataset, and analyze this dataset using signal processing techniques and deep learning methods. EEG signals were acquired from 27 individuals using a wearable EEG device called Emotiv Insight with 5 channels (AF3, T7, Pz, T8, AF4). Each person took part in two trials: one where they were honest and another where they were deceitful. During each experiment, participants evaluated beads they saw before the experiment and stole from them in front of a video clip. This study consisted of four stages. In the first stage, the LieWaves dataset was created with the EEG data obtained during these experiments. In the second stage, preprocessing was carried out. In this stage, the automatic and tunable artifact removal (ATAR) algorithm was applied to remove the artifacts from the EEG signals. Later, the overlapping sliding window (OSW) method was used for data augmentation. In the third stage, feature extraction was performed. To achieve this, EEG signals were analyzed by combining discrete wavelet transform (DWT) and fast Fourier transform (FFT) including statistical methods (SM). In the last stage, each obtained feature vector was classified separately using Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and CNNLSTM hybrid algorithms. At the study's conclusion, the most accurate result, achieving a 99.88% accuracy score, was produced using the LSTM and DWT techniques. With this study, a new data set was introduced to the literature, and it was aimed to eliminate the deficiencies in this field with this data set. Evaluation results obtained from the data set have shown that this data set can be effective in this field.


Asunto(s)
Detección de Mentiras , Humanos , Electroencefalografía/métodos , Análisis de Ondículas , Procesamiento de Señales Asistido por Computador , Algoritmos
10.
Sensors (Basel) ; 24(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257434

RESUMEN

Biometric recognition techniques have become more developed recently, especially in security and attendance systems. Biometrics are features attached to the human body that are considered safer and more reliable since they are difficult to imitate or lose. One of the popular biometrics considered in research is palm veins. They are an intrinsic biometric located under the human skin, so they have several advantages when developing verification systems. However, palm vein images obtained based on infrared spectra have several disadvantages, such as nonuniform illumination and low contrast. This study, based on a convolutional neural network (CNN), was conducted on five public datasets from CASIA, Vera, Tongji, PolyU, and PUT, with three parameters: accuracy, AUC, and EER. Our proposed VeinCNN recognition method, called verification scheme with VeinCNN, uses hybrid feature extraction from a discrete wavelet transform (DWT) and histogram of oriented gradient (HOG). It shows promising results in terms of accuracy, AUC, and EER values, especially in the total parameter values. The best result was obtained for the CASIA dataset with 99.85% accuracy, 99.80% AUC, and 0.0083 EER.


Asunto(s)
Mano , Análisis de Ondículas , Humanos , Biometría , Luz , Redes Neurales de la Computación
11.
Brain Topogr ; 37(1): 1-18, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995000

RESUMEN

Nowadays, road accidents pose a severe risk in cases of sleep disorders. We proposed a novel hybrid deep-learning model for detecting drowsiness to address this issue. The proposed model combines the strengths of discrete wavelet long short-term memory (DWLSTM) and convolutional neural networks (CNN) models to classify single-channel electroencephalogram (EEG) signals. Baseline models such as support vector machine (SVM), linear discriminant analysis (LDA), back propagation neural networks (BPNN), CNN, and CNN merged with LSTM (CNN+LSTM) did not fully utilize the time sequence information. Our proposed model incorporates a majority voting between LSTM layers integrated with discrete wavelet transform (DWT) and the CNN model fed with spectrograms as images. The features extracted from sub-bands generated by DWT can provide more informative & discriminating than using the raw EEG signal. Similarly, spectrogram images fed to CNN learn the specific patterns and features with different levels of drowsiness. Furthermore, the proposed model outperformed state-of-the-art deep learning techniques and conventional baseline methods, achieving an average accuracy of 74.62%, 77.76% (using rounding, F1-score maximization approach respectively for generating labels) on 11 subjects for leave-one-out subject method. It achieved high accuracy while maintaining relatively shorter training and testing times, making it more desirable for quicker drowsiness detection. The performance metrics (accuracy, precision, recall, F1-score) are evaluated after 100 randomized tests along with a 95% confidence interval for classification. Additionally, we validated the mean accuracies from five types of wavelet families, including daubechis, symlet, bi-orthogonal, coiflets, and haar, merged with LSTM layers.


Asunto(s)
Aprendizaje Profundo , Humanos , Reconocimiento en Psicología , Recuerdo Mental , Electroencefalografía , Benchmarking
12.
Cardiovasc Eng Technol ; 15(1): 77-94, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985615

RESUMEN

PURPOSE: The electrocardiogram signal (ECG) presents a fundamental source of information to consider for the diagnosis of a heart condition. Given its low-frequency features, this signal is quite susceptible to various noise and interference sources. This paper presents an improved hybrid approach to ECG signal denoising based on the DWT and the ADTF methods. METHODS: The proposed improvements consist of integrating an adaptive [Formula: see text] parameter into the ADTF approach, combining a soft thresholding ADTF-based process with the DWT details, along with employing the mean filter to handle the baseline wandering noise. Furthermore, the proposed approach incorporates several denoising measures based on various proposed noise features, which have also been introduced in this approach. Several real noises collected from the Noise Stress Test Database (NSTDB), as well as several synthetic noises at different SNR levels, are proposed to ensure a thorough assessment of the proposed method's performance. RESULTS: The evaluation focuses on the SN Rimp, PRD, and MSE parameters, as well as the SINAD parameter as a diagnostic distortion measurement. Furthermore, a time complexity evaluation is proposed. The proposed approach demonstrated promising results compared to a recent hybridization of the DWT and ADTF methods, as well as recently published ECG signal denoising-based approaches in various real and synthetic noise cases using different statistical evaluation metrics. CONCLUSION: In the vast majority of the study cases, the proposed approach outperforms the compared methods in terms of statistical results for real and synthetic noises. Furthermore, compared to these methods, it provides a fairly low time complexity. This is consistent with the ambition of embedding this approach in low-cost hardware architectures.


Asunto(s)
Algoritmos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Electrocardiografía/métodos , Prueba de Esfuerzo
13.
Cureus ; 15(9): e45109, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37842423

RESUMEN

Magnetic resonance elastography (MRE) is used to assess the stiffness of the liver to rule out cirrhosis or fibrosis. The image, nevertheless, is regarded as shear-wave imaging and does not depict any anatomical features. Multimodality medical image fusion (MMIF), such as the fusion of MRE with computed tomography (CT) scan or magnetic resonance imaging (MRI), can help doctors optimize the advantages of each imaging technique. As a result, perceptions serve as valid and valuable assessment criteria. The contrast sensitivity function (CSF), which describes the rates of visual contrast sensitivity through the changing of spatial frequencies, is used mathematically to characterize the human visual system (HVS). As a result, we suggest novel methods for fusing images that use discrete wavelets transform (DWT) based on HVS and CSF models. Images from MRI or CT scan were combined with MRE images, and the outcomes were assessed both subjectively and objectively. Visual inspection of merging images was done throughout the qualitative analysis. The CT-MRE fused images in all four datasets were shown to be superior at maintaining bones and spatial resolution, despite the MRI-MRE being better at exhibiting soft tissues and contrast resolution. It is clear from all four datasets that the liver soft tissue in MRI and CT images mixed successfully with the red-colored stiffness distribution seen in MRE images. The proposed approach outperformed DWT, which produced visual artifacts such as signal loss. Quantitative evaluation using mean, standard deviation, and entropy showed that the generated images from the proposed technique performed better than the source images and DWT. Additionally, peak signal-to-noise ratio, mean square error, correlation coefficient, and structural similarity index measure were employed to compare the two fusion approaches, namely, MRI-MRE and CT-MRE. The comparison did not show the superiority of one approach over the other. In conclusion, both subjective and objective evaluation approaches revealed that the combined images contained more information and characteristics. Hence, the proposed method might be a useful procedure to diagnose and localize the stiffness regions on the liver soft tissue by fusion of MRE with MRI or CT.

14.
Entropy (Basel) ; 25(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37895504

RESUMEN

Of late, image compression has become crucial due to the rising need for faster encoding and decoding. To achieve this objective, the present study proposes the use of canonical Huffman coding (CHC) as an entropy coder, which entails a lower decoding time compared to binary Huffman codes. For image compression, discrete wavelet transform (DWT) and CHC with principal component analysis (PCA) were combined. The lossy method was introduced by using PCA, followed by DWT and CHC to enhance compression efficiency. By using DWT and CHC instead of PCA alone, the reconstructed images have a better peak signal-to-noise ratio (PSNR). In this study, we also developed a hybrid compression model combining the advantages of DWT, CHC and PCA. With the increasing use of image data, better image compression techniques are necessary for the efficient use of storage space. The proposed technique achieved up to 60% compression while maintaining high visual quality. This method also outperformed the currently available techniques in terms of both PSNR (in dB) and bit-per-pixel (bpp) scores. This approach was tested on various color images, including Peppers 512 × 512 × 3 and Couple 256 × 256 × 3, showing improvements by 17 dB and 22 dB, respectively, while reducing the bpp by 0.56 and 0.10, respectively. For grayscale images as well, i.e., Lena 512 × 512 and Boat 256 × 256, the proposed method showed improvements by 5 dB and 8 dB, respectively, with a decrease of 0.02 bpp in both cases.

15.
Asian Pac J Cancer Prev ; 24(9): 2991-2995, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774049

RESUMEN

OBJECTIVE: In India, usually, oral cancer is mostly identified at a progressive stage of malignancy. Hence, we are motivated to identify oral cancer in its early stages, which helps to increase the lifetime of the patient, but this early detection is also more challenging. METHODS: The proposed research work uses a probabilistic neural network (PNN) for the prediction of oral malignancy. The recommended work uses PNN along with the discrete wavelet transform to predict the cancer cells accurately. The classification accuracy of the PNN model is 80%, and hence this technique is best for the prediction of oral cancer. RESULT: Due to heterogeneity in the appearance of oral lesions, it is difficult to identify the cancer region. This research work explores the different computer vision techniques that help in the prediction of oral cancer. CONCLUSION: Oral screening is important in making a decision about oral lesions and also in avoiding delayed referrals, which reduces mortality rates.


Asunto(s)
Neoplasias de la Boca , Redes Neurales de la Computación , Humanos , Probabilidad , Neoplasias de la Boca/diagnóstico , Análisis de Ondículas , India/epidemiología , Algoritmos , Proteínas Nucleares , Moléculas de Adhesión Celular
16.
Bioengineering (Basel) ; 10(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37760176

RESUMEN

This paper focused on creating an interpretable model for automatic rapid eye movement (REM) and non-REM sleep stage scoring for a single-channel electroencephalogram (EEG). Many methods attempt to extract meaningful information to provide to a learning algorithm. This method attempts to let the model extract the meaningful interpretable information by providing a smaller number of time-invariant signal filters for five frequency ranges using five CNN algorithms. A bi-directional GRU algorithm was applied to the output to incorporate time transition information. Training and tests were run on the well-known sleep-EDF-expanded database. The best results produced 97% accuracy, 93% precision, and 89% recall.

17.
Comput Biol Med ; 166: 107491, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37734353

RESUMEN

Epilepsy, a prevalent neurological disorder characterized by disrupted brain activity, affects over 70 million individuals worldwide, as reported by the World Health Organization (WHO). The development of computer-aided diagnosis systems has become vital in assessing epilepsy severity promptly and initiating timely treatment. These systems enable the detection of epileptic seizures by analyzing the electrical activity in the EEG recordings of the patients. In addition, it helps doctors to choose suitable treatment by quickly determining the type, duration, and characteristics of seizures and increases the patient's quality of life. The proposed computer-aided diagnosis system in this study comprises three modules: preprocessing, feature extraction, and classification. The initial module employs a low-pass Chebyshev II filter to eliminate noise artifacts from signal recordings. The second module involves deriving feature vectors using Bispectrum Analysis, Empirical Mode Decomposition, Discrete Wavelet Transform, and Wavelet Packet Analysis. The third module employs the Artificial Neural Networks method for epileptic seizure detection. This study not only enables the comparison of feature extraction efficacy among Bispectrum Analysis, Empirical Mode Decomposition, Discrete Wavelet Transform, and Wavelet Packet Analysis techniques, but it also reveals that Bispectrum Analysis and Empirical Mode Decomposition yield the highest accuracy rate. The method achieves 100% accuracy in detecting epileptic seizures. Additionally, sensitivity analysis has been conducted to enhance the success of Discrete Wavelet Transform and Wavelet Packet Analysis methods and to identify significant features.

18.
Entropy (Basel) ; 25(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628208

RESUMEN

As an effective method for image security protection, image encryption is widely used in data hiding and content protection. This paper proposes an image encryption algorithm based on an improved Hilbert curve with DNA coding. Firstly, the discrete wavelet transform (DWT) decomposes the plaintext image by three-level DWT to obtain the high-frequency and low-frequency components. Secondly, different modes of the Hilbert curve are selected to scramble the high-frequency and low-frequency components. Then, the high-frequency and low-frequency components are reconstructed separately using the inverse discrete wavelet transform (IDWT). Then, the bit matrix of the image pixels is scrambled, changing the pixel value while changing the pixel position and weakening the strong correlation between adjacent pixels to a more significant correlation. Finally, combining dynamic DNA coding and ciphertext feedback to diffuse the pixel values improves the encryption effect. The encryption algorithm performs the scrambling and diffusion in alternating transformations of space, frequency, and spatial domains, breaking the limitations of conventional scrambling. The experimental simulation results and security analysis show that the encryption algorithm can effectively resist statistical attacks and differential attacks with good security and robustness.

19.
Appl Neuropsychol Adult ; : 1-12, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647332

RESUMEN

"Attention-Deficit Hyperactivity Disorder (ADHD)" is a neuro-developmental disorder in children under 12 years old. Learning deficits, anxiety, depression, sensory processing disorder, and oppositional defiant disorder are the most frequent comorbidities of ADHD. This research focuses on ADHD in children, considering its common occurrence and frequent coexistence with other mental disorders. The study utilizes the resting-state open-eye "Electroencephalogram" (EEG) signals of 61 children with ADHD and 60 healthy children. Morphological and "Power Spectral Density" (PSD) features associated with ADHD are analysed and "Principal Component Analysis" (PCA) is employed to reduce data dimensionality. Classification algorithms including AdaBoost, "K-Nearest Neighbour" (KNN) classifier, Naive Bayes, and random forest are utilized, with the Bernoulli Naive Bayes classifier achieving the highest accuracy of 96%. This study found some relevant characteristics for classification at the frontal (F), central (C), and parietal (P) electrode placement sites. Finally, this reveals distinct EEG patterns in children with ADHD and the study provides a potential supplementary method for ADHD diagnosis.

20.
Glob Chang Biol ; 29(22): 6350-6366, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602716

RESUMEN

Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13 C, δ15 N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to -59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15 N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized.


Asunto(s)
Carbono , Sphagnopsida , Humanos , Humedales , Nitrógeno/análisis , Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA