RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The aerial parts of Tilia americana var. mexicana (Malvaceae, formerly Tiliaceae) or "sirimo" are used in Mexican traditional medicine for the relief of mild symptoms of mental stress, commonly referred to as "nerve diseases". Individuals use this plant to fall asleep, to calm states of nervous excitement, headaches, mood disorders, and general discomfort. Recent studies indicated that fractions standardized in their flavonoid content possess antidepressant activity in behavioral assays in mice. The present study aims to focus on the evaluation of the antidepressant effect of the mixture of two flavonoids (FMix), and its interaction with serotonergic drugs. Also, the pharmacological effect of the products of the metabolism of aglycone, quercetin, was evaluated in mice subjected to forced swimming test (FST) and open field test (OFT). MATERIALS AND METHODS: A methanol-soluble extract obtained from leaves of Tilia americana was fractionated in an open column chromatographic separation. One of the fractions contained FMix wich is constituted of the mixture of quercetin 4'-O-rhamnoside (1, 47%) y isoquercitrin (2, 53%). The mice were divided into the several following groups: FMix (0.01, 0.1, 0.5, 1.0, and 2 mg/kg); FMix (1.0 mg/kg) and agonist DOI (2.0 mg/kg); FMix (1.0 mg/kg) and antagonist ketanserin (KET, 0.03 mg/kg) of 5-HT2A receptors; FMix (1.0 mg/kg) and selective agonist 8-OH-DPAT (8-OH, 0.01 mg/kg); FMix (1.0 mg/kg) and antagonist WAY100635 (WAY, 0.5 mg/kg) of 5HT1 receptors; Phloroglucinol (PHL); 3,4-dihydroxy-phenyl acid (DOPAC); p-hydroxyphenyl acetic acid (p-HPAA); and m-hydroxyphenyl acetic acid (m-HPAA) were tested in FST or OFT. RESULTS: FMix induced dependent-dose antidepressant activity and, at the highest dose administered, a sedative effect was also observed. The 8-OH-DPAT, or the DOI, or the KET combination with FMix (1.0 mg/kg) induced a higher antidepressant effect than compounds alone; there was no effect exerted with WAY. The activity on OFT increased only with the FMix and KET combination. At the same time, the products of the aglycone metabolism of quercetin, that is, DOPAC and p-HPAA, decreased the immobility time of the mice in FST at 1.0 mg/kg, and a dose-curve was formed for these. CONCLUSION: The antidepressant effect of FMix could depend, at least in part, on the degradation products of quercetin and with a possible action mode through interaction with the serotoninergic system.
Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Depresión/prevención & control , Extractos Vegetales/farmacología , Quercetina/análogos & derivados , Neuronas Serotoninérgicas/efectos de los fármacos , Tilia , Animales , Antidepresivos/aislamiento & purificación , Antidepresivos/metabolismo , Biotransformación , Encéfalo/metabolismo , Encéfalo/fisiopatología , Depresión/metabolismo , Depresión/fisiopatología , Depresión/psicología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Masculino , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Quercetina/aislamiento & purificación , Quercetina/metabolismo , Quercetina/farmacología , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Tilia/químicaRESUMEN
Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.
Asunto(s)
Enfermedades Mitocondriales/etiología , Enfermedades Neurodegenerativas/complicaciones , Estrés Oxidativo/fisiología , Animales , HumanosRESUMEN
Currently, several studies addresses the novel link between sleep and dopaminergic neurotransmission, focusing most closely on the mechanisms by which Parkinson's disease (PD) and sleep may be intertwined. Therefore, variations in the activity of afferents during the sleep cycles, either at the level of DA cell bodies in the ventral tegmental area (VTA) and/or substantia nigra pars compacta (SNpc) or at the level of dopamine (DA) terminals in limbic areas may impact functions such as memory. Accordingly, we performed striatal and hippocampal neurochemical quantifications of DA, serotonin (5-HT) and metabolites of rats intraperitoneally treated with haloperidol (1.5 mg/kg) or piribedil (8 mg/kg) and submitted to REM sleep deprivation (REMSD) and sleep rebound (REB). Also, we evaluated the effects of REMSD on motor and cognitive parameters and SNpc c-Fos neuronal immunoreactivity. The results indicated that DA release was strongly enhanced by piribedil in the REMSD group. In opposite, haloperidol prevented that alteration. A c-Fos activation characteristic of REMSD was affected in a synergic manner by piribedil, indicating a strong positive correlation between striatal DA levels and nigral c-Fos activation. Hence, we suggest that memory process is severely impacted by both D2 blockade and REMSD and was even more by its combination. Conversely, the activation of D2 receptor counteracted such memory impairment. Therefore, the present evidence reinforce that the D2 receptor is a key player in the SNpc neuronal activation mediated by REMSD, as a consequence these changes may have direct impact for cognitive and sleep abnormalities found in patients with PD. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Asunto(s)
Neuronas/fisiología , Receptores de Dopamina D2/fisiología , Privación de Sueño/fisiopatología , Sustancia Negra/citología , Sustancia Negra/fisiología , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2 , Neuroimagen Funcional , Haloperidol/farmacología , Hipocampo/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Piribedil/farmacología , Ratas , Receptores de Dopamina D2/agonistas , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Serotonina , Privación de Sueño/metabolismo , Sustancia Negra/efectos de los fármacosRESUMEN
Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1ß) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1ß level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.
Asunto(s)
Terapia por Ejercicio/métodos , Hidroxidopaminas/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/rehabilitación , Natación/fisiología , Animales , Catalasa/metabolismo , Citrato (si)-Sintasa/metabolismo , Cuerpo Estriado/enzimología , Depresión/etiología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/enzimología , Enfermedad de Parkinson/fisiopatología , Desempeño Psicomotor , Reconocimiento en Psicología , Prueba de Desempeño de Rotación con Aceleración ConstanteRESUMEN
Prolonged and repeated periods of maternal separation produce behavioral phenotype of increased vulnerability to neuropsychiatric disorders and drug abuse. Most of the changes in behavior, corticosterone (CORT) and monoamine levels induced by long maternal separation (LMS) are observed after a challenge, but not in basal conditions. LMS increases ethanol-induced locomotor response and self-administration, possibly due to changes in CORT release and/or monoamine concentrations. This study examined the effects of LMS in association with chronic ethanol treatment on plasma CORT and brain monoamine concentrations in male and female Swiss mice, which were kept undisturbed (animal facility rearing - AFR) or separated from their mothers for 3h/day, from 2 to 14 days of age (LMS). As adults, one set of male and female mice received no drug treatment to assess the effect of LMS per se. Another set of animals received saline injections for 20 days and one ethanol injection (2.2g/kg, i.p.) on day 21 (acute) or ethanol for 21 days (chronic). Locomotor activity, plasma CORT levels and monoamines in the frontal cortex, striatum and hippocampus of AFR and LMS mice were evaluated in non-treated, acute and chronic ethanol-treated animals. In non-treated mice, no differences were found in CORT or locomotor activity, with small changes in monoamines content. In LMS females, chronic ethanol increased dopamine and serotonin concentrations in the frontal cortex, relative to acute ethanol LMS and to chronic ethanol-treated AFR groups (p<0.05). In LMS males, chronic ethanol increased hippocampal noradrenaline, dopamine, serotonin and metabolites when compared to respective AFR controls, as well as acute LMS. Moreover, chronic ethanol treatment resulted in higher CORT concentrations in LMS than in AFR males. Overall, these results indicate that LMS mice were more susceptible to the effects of chronic ethanol administration on CORT and brain monoamine concentrations, and that these effects were sex-dependent.
Asunto(s)
Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Depresores del Sistema Nervioso Central/administración & dosificación , Corticosterona/sangre , Etanol/administración & dosificación , Privación Materna , Caracteres Sexuales , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Esquema de Medicación , Femenino , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Factores de TiempoRESUMEN
Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Serotonina/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Humanos , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Neuronas/patologíaRESUMEN
The aim of this study was to investigate the possible effects of reproductive experience on dopaminergic profile in three different brain tissues, hypothalamus, striatum and cortex in rats on 7th-8th day of pregnancy during the light-dark shift (between 1700-1900h). Results showed that in hypothalamus, dopamine levels increased and DOPAC/DA decreased as a function of parity. In cortex, no differences were observed. In striata, the haloperidol-induced HVA and HVA/DA increases were less intense in experienced animals. These findings suggested that reproductive experience produced functional central changes during pregnancy, with different neurochemical responses depending on the brain region.
A dopamina age nos níveis endócrino, neuroquímico e comportamental. A experiência reprodutiva modula alguns destes aspectos: a dopamina está aumentada no estriato e no hipotálamo de ratas muiltigrávidas entre 12:00-14:00 horas. A sensibilidade dos terminais dopaminérgicos também parece ser modulada por uma experiência reprodutiva prévia. Nosso objetivo foi o de investigar os possíveis efeitos da experiência reprodutiva no perfil dopaminérgico de três diferentes tecidos cerebrais, hipotálamo, estriato e córtex em ratas no 7º-8º dia de gestação durante a fase de virada do ciclo claro-escuro (entre 17:00-19:00h). Nossos resultados mostraram que os níveis dopaminérgicos no hipotálamo aumentaram e o índice DOPAC/DA diminuiu em multigrávidas quando comparadas às primigrávidas. No córtex, nenhuma diferença foi encontrada. No estriato, o aumento de HVA e HVA/DA induzidos pelo haloperidol foi menos intenso nos animais experientes. Nossos resultados sugerem que a experiência reprodutiva produz alterações funcionais centrais durante a gestação, com diferentes respostas neuroquímicas de acordo com a região cerebral.