Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1441: 705-717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884744

RESUMEN

Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.


Asunto(s)
Mutación , Humanos , Síndrome de Heterotaxia/genética , Cardiopatías Congénitas/genética , Situs Inversus/genética
2.
Clin Proteomics ; 21(1): 8, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311768

RESUMEN

BACKGROUND: Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue. METHODS: In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix. RESULTS: This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue. CONCLUSIONS: The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.

3.
J Inflamm Res ; 16: 373-380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741287

RESUMEN

Purpose: This study aimed to investigate whether the impaired ciliary length and aberrant ciliary ultrastructure marker, dynein axonemal intermediate chain 1 (DNAI1), are important pathological characteristics in nasal mucosa from patients with allergic rhinitis (AR). Patients and Methods: Biopsies were taken from the inferior turbinate (IT) of controls (n = 20) and patients with AR (n = 20). The ciliary length and the DNAI1 location patterns were assessed by using immunofluorescent staining. Three patterns of DNAI1 localization were defined using a semi-quantitative scoring system: normal (N), partial (P) and absence (A). Every individual section was assigned a score between 0 and 2 in each high-power field (5 fields per sample). The score of 0 = pattern N >70%; 1 = patterns N + P >70%; and 2 = pattern A ≥30%. The receiver operating characteristic (ROC) curve was used to evaluate the predicted value of DNAI1 score for AR. Results: The ciliary length was reduced by 33.3% in patients with AR compared with controls (P < 0.0001). The higher DNAI1 score was found in the AR group, with a median (first and third quartile) of 0.9 (0.4 and 1.08), which was 0.1 (0 and 0.76) in the control group (P = 0.0071). The ROC of DNAI1 was calculated based on the area under the curve of 0.74 (P = 0.0094). The cutoff value of ROC was 0.5833, with a sensitivity and specificity of 70%. Conclusion: These results suggested that the shorter ciliary length and aberrant localization of DNAI1 are potentially important pathological characteristics of the allergic nasal mucosa. The aberrant localization of DNAI1 may provide a novel candidate target for clinical management of AR.

4.
Am J Med Genet A ; 188(10): 3024-3031, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35869935

RESUMEN

The genetic factors contributing to primary ciliary dyskinesia (PCD), a rare autosomal recessive disorder, remain elusive for ~20%-35% of patients with complex and abnormal clinical phenotypes. Our study aimed to identify causative variants of PCD-associated pathogenic candidate genes using whole-exome sequencing (WES). All patients were diagnosed with PCD based on clinical phenotype or transmission electron microscopy images of cilia. WES and bioinformatic analysis were then conducted on patients with PCD. Identified candidate variants were validated by Sanger sequencing. Pathogenicity of candidate variants was then evaluated using in silico software and the American College of Medical Genetics and Genomics (ACMG) database. In total, 13 rare variants were identified in patients with PCD, among which were three homozygous causative variants (including one splicing variant) in the PCD-associated genes CCDC40 and DNAI1. Moreover, two stop-gain heterozygous variants of DNAAF3 and DNAH1 were classified as pathogenic variants based on the ACMG criteria. This study identified novel potential pathogenic genetic factors associated with PCD. Noteworthy, the patients with PCD carried multiple rare causative gene variants, thereby suggesting that known causative genes along with other functional genes should be considered for such heterogeneous genetic disorders.


Asunto(s)
Trastornos de la Motilidad Ciliar , Síndrome de Kartagener , Pueblo Asiatico/genética , China , Cilios , Trastornos de la Motilidad Ciliar/genética , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutación , Secuenciación del Exoma
5.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445527

RESUMEN

Primary ciliary dyskinesia (PCD) is a disease caused by impaired function of motile cilia. PCD mainly affects the lungs and reproductive organs. Inheritance is autosomal recessive and X-linked. PCD patients have diverse clinical manifestations, thus making the establishment of proper diagnosis challenging. The utility of next-generation sequencing (NGS) technology for diagnostic purposes allows for better understanding of the PCD genetic background. However, identification of specific disease-causing variants is difficult. The main aim of this study was to create a unique guideline that will enable the standardization of the assessment of novel genetic variants within PCD-associated genes. The designed pipeline consists of three main steps: (1) sequencing, detection, and identification of genes/variants; (2) classification of variants according to their effect; and (3) variant characterization using in silico structural and functional analysis. The pipeline was validated through the analysis of the variants detected in a well-known PCD disease-causing gene (DNAI1) and the novel candidate gene (SPAG16). The application of this pipeline resulted in identification of potential disease-causing variants, as well as validation of the variants pathogenicity, through their analysis on transcriptional, translational, and posttranslational levels. The application of this pipeline leads to the confirmation of PCD diagnosis and enables a shift from candidate to PCD disease-causing gene.


Asunto(s)
Dineínas Axonemales/genética , Trastornos de la Motilidad Ciliar/diagnóstico , Marcadores Genéticos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Estudios de Casos y Controles , Trastornos de la Motilidad Ciliar/clasificación , Trastornos de la Motilidad Ciliar/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
6.
Breast Cancer Res Treat ; 186(2): 569-575, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33507482

RESUMEN

BACKGROUND: Concurrent germline (g) pathogenic variants related to hereditary breast cancer represent a rare occurrence. While double heterozygosity in gBRCA1 and gBRCA2 has been reported in the past, herein we describe the first case of three known concurrent pathogenic variants identified in a family with a strong history of breast cancer. Case presentation The proband is a 55-year-old female diagnosed with synchronous bilateral breast cancers. She underwent a multi-gene panel testing indicating the presence of 3 concurrent heterozygous germline deleterious variants in BRCA1 (c.181T > G), BRCA2 (c.4398_4402delACATT), and CHEK2 (1100delC). The patient's two daughters (34 and 29 years-old) were found to be transheterozygous for inherited pathogenic variants in BRCA1 (c.181T > G) and CHEK2 (1100delC) genes. CONCLUSION: The cancer risk and phenotypic manifestations associated with transheterozygous or multiple concurrent deleterious germline variants in hereditary breast cancer requires further investigation. A personalized approach to counseling, screening, and risk reduction should be undertaken for these individuals.


Asunto(s)
Neoplasias de la Mama , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Quinasa de Punto de Control 2/genética , Femenino , Genes BRCA2 , Predisposición Genética a la Enfermedad , Células Germinativas , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad
7.
Front Genet ; 10: 749, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507630

RESUMEN

Primary ciliary dyskinesia (PCD), a rare genetic disorder, is mostly caused by defects in more than 40 known cilia structure-related genes. However, in approximately 20-35% of patients, it is caused by unknown genetic factors, and the inherited pathogenic factors are difficult to confirm. Kartagener syndrome (KTS) is a subtype of PCD associated with situs inversus, presenting more complex genetic heterogeneity. The aim of this study was to identify pathogenic mutations of candidate genes in Chinese patients with KTS and investigate the activation of the heterotaxy-related NOTCH pathway. Whole-exome sequencing was conducted in five patients with KTS. Pathogenic variants were identified using bioinformatics analysis. Candidate variants were validated by Sanger sequencing. The expression of the NOTCH pathway target genes was detected in patients with KTS. We identified 10 KTS-associated variants in six causative genes, namely, CCDC40, DNAH1, DNAH5, DNAH11, DNAI1, and LRRC6. Only one homozygote mutation was identified in LRRC6 (c.64dupT). Compound heterozygous mutations were found in DNAH1 and DNAH5. Six novel mutations were identified in four genes. Further analyses showed that the NOTCH pathway might be activated in patients with KTS. Overall, our study showed that compound heterozygous mutations widely exist in Chinese KTS patients. Our results demonstrated that the activation of the NOTCH pathway might play a role in the situs inversus pathogenicity of KTS. These findings highlight that Kartagener syndrome might be a complex genetic heterogeneous disorder mediated by heterozygous mutations in multiple PCD- or cilia-related genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA