Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 646: 114647, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35289287

RESUMEN

Salmonella infection could come from eating contaminated meat or raw eggs, and drinking milk or water contaminated by Salmonella enteritidis. Therefore, it is necessary to explore a fast and easy method for the detection of S. enteritidis in these diverse samples. For this purpose, a novel particle size sensing tool was designed for ultrasensitive and accurate S. enteritidis detection. This assay consisted of rolling circle amplification (RCA) with dynamic light scattering (DLS) using gold nanoparticles (AuNPs) modified with DNA probe as DNA-AuNPs as the capture surface into a hybrid RCA-DLS assay combined with asymmetric polymerase chain reaction (aPCR) and subsequent detection. Under optimal experimental conditions, the novel hybrid RCA-DLS assay combined with aPCR for S. enteritidis reached a limit of detection (LOD) as low as 3 × 100 CFU/mL in pure culture. In spiked milk samples, the LOD was 2.0 × 100 CFU/mL without pre-enriched bacteria. The total time of RCA-DLS assay was about 6 h which including genomic DNA extraction, aPCR, RCA and DLS determination. The hybrid RCA-DLS assay combined with aPCR holds promise in the specific and sensitive S. enteritidis detection.


Asunto(s)
Nanopartículas del Metal , Salmonella enteritidis , ADN Bacteriano/análisis , ADN Bacteriano/genética , Dispersión Dinámica de Luz , Oro , Límite de Detección , Reacción en Cadena de la Polimerasa/métodos , Salmonella enteritidis/genética
2.
Anal Sci ; 37(2): 309-314, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33342922

RESUMEN

Radiation-sensitive biomolecules are highly significant for studying biological effects of radiation and developing ionizing radiation detectors based on biomolecules. In this work, we selected hypoxanthine phosphoribosyl transferase gene fragments sensitive to gamma-ray irradiation as a sensing element for radiation detection. The end was modified with thiol groups. The thiol-modified oligonucleotide sequences were coupled to the surface of gold nanoparticles by Au-S covalent bonds. The DNA attached to the surface of gold nanoparticles forms a DNA-AuNPs assembly through base pairing. The assembly was irradiated by gamma rays. And its response to radiation was studied with ultraviolet-visible spectroscopy and surface-enhanced Raman scattering (SERS) spectroscopy techniques. SERS spectroscopy and ultraviolet spectroscopy can detect the response of the DNA-AuNPs assembly to gamma-ray irradiation below 100 and 100 - 250 Gy, respectively. The results indicated that it was feasible to develop a new approach of gamma-ray detectors using biomolecular assemblies of gold nanoparticles.


Asunto(s)
Rayos gamma , Oro/metabolismo , Hipoxantina Fosforribosiltransferasa/metabolismo , Nanopartículas del Metal/química , ADN/química , ADN/metabolismo , Oro/química , Humanos , Hipoxantina Fosforribosiltransferasa/genética
3.
Biosens Bioelectron ; 144: 111664, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513959

RESUMEN

MicroRNA-21 (miRNA-21) is a promising diagnostic biomarker for breast cancer screening and disease progression. A sensitive and selective strategy for the quantitative determination of miRNA-21 is of great significance in the early diagnosis of cancers. Herein, a novel electrogenerated chemiluminescence (ECL) biosensor was designed for the detection of miRNA-21 with dual signal amplification based on isothermal strand-displacement polymerase reaction (ISDPR) and bridge DNA-gold nanoparticles (AuNPs) nanocomposites. The ECL biosensor was fabricated by self-assembling a thiolated capture probe (SH-CP) on the surface of a gold electrode. The target miRNA-21 initiated the phi29 DNA polymerase-mediated ISDPR, which could generate large numbers of single-stranded DNA (assistant DNA) with accurate and comprehensive nucleotide sequences. The assistant DNA was captured by the SH-CP self-assembled on the Au electrode and further hybridized with bridge DNA-AuNPs nanocomposites, more biotins can be captured on the electrode surface. Afterward, a streptavidin-modified Ru (bpy)32+ complex (SA-Ru) was bound to the bridge DNA-AuNPs nanocomposites via a specific interaction between biotin and streptavidin to produce a strong ECL signal. The ECL intensity was logarithmically proportion to the concentration of target miRNA-21 over a range from 0.01 fM to 10,000 fM with a detection limit of 3.2 aM. The proposed ECL biosensor was successfully applied to detect miRNA-21 in total RNA samples extracted from human breast cancer cells, and it showed great potential for early cancer diagnosis based on miRNA as a biomarker.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama/diagnóstico , Técnicas Electroquímicas , MicroARNs/aislamiento & purificación , Neoplasias de la Mama/genética , ADN de Cadena Simple/química , Femenino , Oro/química , Humanos , Luminiscencia , Mediciones Luminiscentes , Nanopartículas del Metal , MicroARNs/química
4.
Foods ; 8(8)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357626

RESUMEN

The performances of a quartz crystal microbalances (QCMs) based on an electronic nose (E-nose), modified with hairpin-DNA (hpDNA) for carrot aroma profiling has been evaluated. Solid phase micro-extraction (SPME) headspace sampling, combined with gas chromatography (GC), was used as a reference method. The changes in carrot aroma profiles stored at different temperatures (-18 °C, 4 °C, 25 °C, and 40 °C) were monitored during time up to 26 days. The principal component analysis of the data evidenced the different aroma patterns related to the presence of different key compounds. The output data achieved with the hpDNA-based E-nose were able to detect aroma patterns similar to gas chromatography with mass spectrometry (GC-MS). This work demonstrates that hpDNA has different sizes of loops that can be used for the development of sensor arrays able to detect aroma patterns in food and their changes with advantages in terms of easiness of usage, rapidity, and cost of analysis versus classical methods.

5.
ACS Sens ; 4(8): 2140-2149, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31353891

RESUMEN

Multiplexed detection of Alzheimer's disease (AD) core biomarkers is of great significance to early diagnosis and personalized treatment of AD patients. Herein, we construct a robust and convenient surface-enhanced Raman scattering (SERS) biosensing platform for simultaneous detection of Aß(1-42) oligomers and Tau protein using different Raman dye-coded polyA aptamer-AuNPs (PAapt-AuNPs) conjugates. This strategy relies on the specific protein-aptamer binding-mediated aggregation of AuNPs and the concomitant plasmonic coupling effect that allow us to "turn on" SERS detection of protein biomarkers. To the best of our knowledge, this is the first work in which PAapt-AuNPs conjugates are used for probing protein biomarkers, which may be enlightening for the exploitation of more extensive biological applications of aptamer-AuNPs conjugates. The results reveal that the present strategy displays excellent analytical performance. Moreover, the applicability of this strategy is demonstrated in the artificial cerebrospinal fluid (CSF) samples with satisfactory results. Except for the prominent sensitivity and practicality, our strategy offers additional advantages. The preparation of nanoconjugates is handy and easily repeated, and the synthesis cost is greatly reduced because it dispenses with the complicated labeling process. Moreover, the assay can be accomplished in 15 min, allowing rapid detection of protein biomarkers. Furthermore, simultaneous detection of Tau protein and Aß(1-42) oligomers is realized by employing different Raman dye-coded nanoconjugates, which is valuable for accurately predicting and diagnosing AD disease. Thus, our PAapt-AuNPs conjugate-based multiplexed SERS strategy indeed creates a useful and universal platform for detecting multiple protein biomarkers and related clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/análisis , Aptámeros de Nucleótidos/química , Oro/química , Nanopartículas del Metal/química , Fragmentos de Péptidos/análisis , Poli A/química , Biomarcadores/análisis , Técnicas Biosensibles , Técnicas Electroquímicas , Humanos , Espectrometría Raman
6.
Biosens Bioelectron ; 86: 56-61, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27322936

RESUMEN

An extensible multidimensional colorimetric sensor array for the detection of protein is developed based on DNA functionalized gold nanoparticles (DNA-AuNPs) as receptors. In the presence of different proteins, the aggregation behavior of DNA-AuNPs was regulated by the high concentrations of salt and caused different color change; while DNA-AuNPs grew induced by the reduction of HAuCl4 and NH2OH as a reductant on the surface of nanoparticles exhibited different morphologies and color appearance for different proteins. The transducers based on AuNPs modified by specific and nonspecific DNA enables naked-eye discrimination of the target analytes. This extensible sensing platform with only two receptors could simultaneously discriminate ten native proteins and their thermally denatured conformations using hierarchical cluster analysis (HCA) at the concentration of 50nM with 100% accuracy. This opens up the possibility of the sensor array to investigate the different conformational changes of biomacromolecules, and it gives a new direction of developing multidimensional transduction principles based on plasmonic nanoparticle conjugates. Furthermore, the sensing system could discriminate proteins at the concentration of 500nM in the presence of 50% human urine, which indicated this sensor array has great potential ability in analyzing real biological fluids. In addition, the multidimensional colorimetric sensor array is suitable for analysis of target analytes in the resource-restricted regions because of rapid, simple, low cost, and in-field detection with the naked eye.


Asunto(s)
Colorimetría/instrumentación , ADN/química , Nanopartículas del Metal/química , Análisis por Matrices de Proteínas/instrumentación , Proteínas/análisis , Urinálisis/instrumentación , ADN/genética , Diseño de Equipo , Análisis de Falla de Equipo , Oro/química , Humanos , Proteínas/química , Proteínas/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Talanta ; 152: 228-35, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26992515

RESUMEN

In this work, a highly sensitive electrochemical DNA methyltransferase (MTase) activity assay was fabricated with DNA-gold nanoparticles (Au NPs) network as signal amplification unit and an easy assembly method by the linkage of benzenedithiol bridge. By two complementary AuNPs modified single-stranded DNA, DNA-gold nanoparticles network was self-assembled. With the linkage of benzenedithiol bridge, the DNA network structure was immobilized on the surface of gold electrode through the covalent Au-S bond. In the presence of Dam MTase, the special sites of DNA-AuNPs network were methylated and could not be digested by restriction endonuclease Mbo I. Thus the loaded electrochemical indicator Methylene blue (MB) was MB molecules still remained on the DNA-Au NPs network. The electrochemical response depended on the methylated degree, which could be used to detect MTase activity. By the differential pulse voltammetry (DPV), it was demonstrated that a linear relationship between the DPV response and logarithm of Dam concentration ranged from 0.075 to 30 U/mL, achieving a low detection limit of 0.02 U/mL. The use of benzenedithiol avoided the direct incubation of the solid electrode with the capture DNA probe under complex and harsh conditions. Therefore the immobilization of DNA-AuNPs network was easy to be carried out, which is favorable for the specially high stability and reproducibility of the electrochemical biosensor.


Asunto(s)
Técnicas Biosensibles , ADN de Cadena Simple/química , Proteínas de Escherichia coli/análisis , Escherichia coli/enzimología , Oro/química , Nanopartículas del Metal/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/análisis , Metilación de ADN , Enzimas de Restricción del ADN/química , Escherichia coli/química , Límite de Detección , Azul de Metileno/química , Compuestos de Sulfhidrilo/química
8.
Biosens Bioelectron ; 58: 40-7, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24613968

RESUMEN

A sensitive and selective electrochemical method was developed for the detection of DNA methylation, determination of DNA methyltransferase (MTase) activity and screening of MTase inhibitor. Methylene blue (MB) was employed as electrochemical indicator and DNA-modified gold nanoparticles (AuNPs) were used as signal amplification unit because the DNA strands in this composite have strong adsorption ability for MB. First, the thiolated single-stranded DNA S1 was self-assembled on gold electrode, hybridization between the lower portion of DNA S1 and its complementary DNA S2 formed an identical double-stranded tetranucleotide target sequence for both DNA adenine methylation (Dam) MTase and methylation-resistant endonuclease Mbo I, then the upper portion of DNA S1 was hybridized with its complementary DNA S3 modified on AuNPs to bring the DNA S3-AuNPs amplification units onto the electrode. The DNA S1/S2/S3-AuNPs bioconjugate has lots of DNA strands, and they can adsorb abundant MB. Mbo I endounuclease could not cleave the identical target sequence after it was methylated by Dam MTase. On the contrary, the sequence without methylation could be cleaved, which would decrease the amount of adsorbed MB. The presence of redox-active MB was detected electrochemically by differential pulse voltammetry (DPV). Thus, the activity of Dam MTase and methylation status were sensitively converted to the DNA S3-AuNPs amplified DPV signals. The DPV signal demonstrated a linear relationship with logarithm of Dam concentration ranging from 0.075 to 30U/mL, achieving a detection limit of 0.02U/mL (S/N=3). Also, screening of Dam MTase inhibitor 5-fluorouracil was successfully investigated using this fabricated sensor.


Asunto(s)
Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN/química , Fluorouracilo/química , Oro/química , Nanopartículas del Metal/química , ADN/genética , Metilación de ADN/efectos de los fármacos , Activación Enzimática , Diseño de Equipo , Análisis de Falla de Equipo , Fluorouracilo/análisis , Nanopartículas del Metal/ultraestructura , Azul de Metileno/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA