Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell Mol Life Sci ; 81(1): 222, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767725

RESUMEN

BACKGROUND: Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE: Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS: Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION: Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenoma , Genoma de Planta , Solanum lycopersicum , Solanum lycopersicum/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38821673

RESUMEN

Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.


Asunto(s)
Compuestos de Bencidrilo , Daño del ADN , Metilación de ADN , Diabetes Mellitus Experimental , Glucósidos , Estrés Oxidativo , Animales , Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Metilación de ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Ratones , Estrés Oxidativo/efectos de los fármacos , Masculino , Hipoglucemiantes/farmacología , Pruebas de Micronúcleos , Reparación del ADN/efectos de los fármacos , Ensayo Cometa
3.
Clin Epigenetics ; 16(1): 48, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528641

RESUMEN

BACKGROUND: miR-182 promoter hypermethylation frequently occurs in various tumors, including acute myeloid leukemia, and leads to low expression of miR-182. However, whether adult acute lymphocyte leukemia (ALL) cells have high miR-182 promoter methylation has not been determined. METHODS: To assess the methylation status of the miR-182 promoter, methylation and unmethylation-specific PCR analysis, bisulfite-sequencing analysis, and MethylTarget™ assays were performed to measure the frequency of methylation at the miR-182 promoter. Bone marrow cells were isolated from miR-182 knockout (182KO) and 182 wild type (182WT) mice to construct BCR-ABL (P190) and Notch-induced murine B-ALL and T-ALL models, respectively. Primary ALL samples were performed to investigate synergistic effects of the hypomethylation agents (HMAs) and the BCL2 inhibitor venetoclax (Ven) in vitro. RESULTS: miR-182 (miR-182-5P) expression was substantially lower in ALL blasts than in normal controls (NCs) because of DNA hypermethylation at the miR-182 promoter in ALL blasts but not in normal controls (NCs). Knockout of miR-182 (182KO) markedly accelerated ALL development, facilitated the infiltration, and shortened the OS in a BCR-ABL (P190)-induced murine B-ALL model. Furthermore, the 182KO ALL cell population was enriched with more leukemia-initiating cells (CD43+B220+ cells, LICs) and presented higher leukemogenic activity than the 182WT ALL population. Furthermore, depletion of miR-182 reduced the OS in a Notch-induced murine T-ALL model, suggesting that miR-182 knockout accelerates ALL development. Mechanistically, overexpression of miR-182 inhibited proliferation and induced apoptosis by directly targeting PBX3 and BCL2, two well-known oncogenes, that are key targets of miR-182. Most importantly, DAC in combination with Ven had synergistic effects on ALL cells with miR-182 promoter hypermethylation, but not on ALL cells with miR-182 promoter hypomethylation. CONCLUSIONS: Collectively, we identified miR-182 as a tumor suppressor gene in ALL cells and low expression of miR-182 because of hypermethylation facilitates the malignant phenotype of ALL cells. DAC + Ven cotreatment might has been applied in the clinical try for ALL patients with miR-182 promoter hypermethylation. Furthermore, the methylation frequency at the miR-182 promoter should be a potential biomarker for DAC + Ven treatment in ALL patients.


Asunto(s)
Antineoplásicos , MicroARNs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Metilación de ADN/genética , Linfocitos/metabolismo , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/uso terapéutico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
4.
J Appl Toxicol ; 44(7): 1014-1027, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523572

RESUMEN

The present investigation dealt with harmful effects of hexavalent chromium (Cr [VI]) on liver of Swiss albino mice. This variant exhibited cytotoxicity, mutagenicity, and carcinogenicity. Our study focused on elucidating the hepatotoxic effects of chronic low-dose exposure to Cr (VI) (2, 5, and 10 ppm) administered via drinking water for 4 and 8 months. The observed elevation in SGPT, ALP, and SGOT and increased oxidative stress markers unequivocally confirmed the severe disruption of liver homeostasis at these low treatment doses. Noteworthy alterations in histoarchitecture, body weight, and water intake provided further evidences of the harmful effects of Cr (VI). Production of reactive oxygen species (ROS) during metabolism led to DNA damages. Immunohistochemistry and qRT-PCR analyses revealed that chronic low-dose exposure of Cr (VI) induced apoptosis in liver tissue. Our study exhibited alterations in the expression pattern of DNA repair genes (Rad51, Mutyh, Mlh1, and Ogg1), coupled with promoter hypermethylation of Mutyh and Rad51, leading to transcriptional inhibition. Our findings underscored the potential of low-dose Cr (VI) exposure on hepatotoxicity by the intricate interplay between apoptosis induction and epigenetic alterations of DNA repair genes.


Asunto(s)
Apoptosis , Cromo , Metilación de ADN , Reparación del ADN , Hígado , Estrés Oxidativo , Regiones Promotoras Genéticas , Animales , Cromo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Masculino , Especies Reactivas de Oxígeno/metabolismo , ADN Glicosilasas/genética , Relación Dosis-Respuesta a Droga , Daño del ADN/efectos de los fármacos , Recombinasa Rad51/genética
5.
Genes (Basel) ; 15(2)2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38397165

RESUMEN

For several decades, cancers have demonstrably been one of the most frequent causes of death worldwide. In addition to genetic causes, cancer can also be caused by epigenetic gene modifications. Frequently, tumor suppressor genes are epigenetically inactivated due to hypermethylation of their CpG islands, actively contributing to tumorigenesis. Since CpG islands are usually localized near promoters, hypermethylation of the promoter can have a major impact on gene expression. In this study, the potential tumor suppressor gene Receptor Interacting Serine/Threonine Protein Kinase 3 (RIPK3) was examined for an epigenetic regulation and its gene inactivation in melanomas. A hypermethylation of the RIPK3 CpG island was detected by bisulfite pyrosequencing and was accompanied by a correlated loss of its expression. In addition, an increasing RIPK3 methylation rate was observed with increasing tumor stage of melanomas. For further epigenetic characterization of RIPK3, epigenetic modulation was performed using a modified CRISPR/dCas9 (CRISPRa activation) system targeting its DNA hypermethylation. We observed a reduced fitness of melanoma cells by (re-)expression and demethylation of the RIPK3 gene using the epigenetic editing-based method. The tumor suppressive function of RIPK3 was evident by phenotypic determination using fluorescence microscopy, flow cytometry and wound healing assay. Our data highlight the function of RIPK3 as an epigenetically regulated tumor suppressor in melanoma, allowing it to be classified as a biomarker.


Asunto(s)
Biomarcadores de Tumor , Melanoma , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Humanos , Metilación de ADN/genética , Epigénesis Genética , Genes Supresores de Tumor , Melanoma/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Biomarcadores de Tumor/genética
6.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260521

RESUMEN

Maintenance of the mitochondrial inner membrane potential (ΔΨM) is critical for many aspects of mitochondrial function, including mitochondrial protein import and ion homeostasis. While ΔΨM loss and its consequences are well studied, little is known about the effects of increased ΔΨM. In this study, we used cells deleted of ATPIF1, a natural inhibitor of the hydrolytic activity of the ATP synthase, as a genetic model of mitochondrial hyperpolarization. Our data show that chronic ΔΨM increase leads to nuclear DNA hypermethylation, regulating transcription of mitochondria, carbohydrate and lipid metabolism genes. Surprisingly, remodeling of phospholipids, but not metabolites or redox changes, mechanistically links the ΔΨM to the epigenome. These changes were also observed upon chemical exposures and reversed by decreasing the ΔΨM, highlighting them as hallmark adaptations to chronic mitochondrial hyperpolarization. Our results reveal the ΔΨM as the upstream signal conveying the mitochondrial status to the epigenome to regulate cellular biology, providing a new framework for how mitochondria can influence health outcomes in the absence of canonical dysfunction.

7.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266195

RESUMEN

The cross-species characterization of evolutionary changes in the functional genome can facilitate the translation of genetic findings across species and the interpretation of the evolutionary basis underlying complex phenotypes. Yet, this has not been fully explored between cattle, sheep, goats, and other mammals. Here, we systematically characterized the evolutionary dynamics of DNA methylation and gene expression in 3 somatic tissues (i.e. brain, liver, and skeletal muscle) and sperm across 7 mammalian species, including 3 ruminant livestock species (cattle, sheep, and goats), humans, pigs, mice, and dogs, by generating and integrating 160 DNA methylation and transcriptomic data sets. We demonstrate dynamic changes of DNA hypomethylated regions and hypermethylated regions in tissue-type manner across cattle, sheep, and goats. Specifically, based on the phylo-epigenetic model of DNA methylome, we identified a total of 25,074 hypomethylated region extension events specific to cattle, which participated in rewiring tissue-specific regulatory network. Furthermore, by integrating genome-wide association studies of 50 cattle traits, we provided novel insights into the genetic and evolutionary basis of complex phenotypes in cattle. Overall, our study provides a valuable resource for exploring the evolutionary dynamics of the functional genome and highlights the importance of cross-species characterization of multiomics data sets for the evolutionary interpretation of complex phenotypes in cattle livestock.


Asunto(s)
Bovinos , Metilación de ADN , Cabras , Ovinos , Animales , Bovinos/genética , Perros , Humanos , Masculino , Ratones , Estudio de Asociación del Genoma Completo , Cabras/genética , Herencia Multifactorial , Ovinos/genética , Porcinos
8.
Epigenetics Chromatin ; 16(1): 31, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537688

RESUMEN

BACKGROUND: DNA hypermethylation is an epigenetic feature that modulates gene expression, and its deregulation is observed in cancer. Previously, we identified a neural-related DNA hypermethylation fingerprint in colon cancer, where most of the top hypermethylated and downregulated genes have known functions in the nervous system. To evaluate the presence of this signature and its relevance to carcinogenesis in general, we considered 16 solid cancer types available in The Cancer Genome Atlas (TCGA). RESULTS: All tested cancers showed significant enrichment for neural-related genes amongst hypermethylated genes. This signature was already present in two premalignant tissue types and could not be explained by potential confounders such as bivalency status or tumor purity. Further characterization of the neural-related DNA hypermethylation signature in colon cancer showed particular enrichment for genes that are overexpressed during neural differentiation. Lastly, an analysis of upstream regulators identified RE1-Silencing Transcription factor (REST) as a potential mediator of this DNA methylation signature. CONCLUSION: Our study confirms the presence of a neural-related DNA hypermethylation fingerprint in various cancers, of genes linked to neural differentiation, and points to REST as a possible regulator of this mechanism. We propose that this fingerprint indicates an involvement of DNA hypermethylation in the preservation of neural stemness in cancer cells.


Asunto(s)
Neoplasias del Colon , Metilación de ADN , Humanos , Neoplasias del Colon/genética , ADN
9.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37368308

RESUMEN

DNA methylation is an epigenetic mechanism that involves the addition of a methyl group to a cytosine residue in CpG dinucleotides, which are particularly abundant in gene promoter regions. Several studies have highlighted the role that modifications of DNA methylation may have on the adverse health effects caused by exposure to environmental toxicants. One group of xenobiotics that is increasingly present in our daily lives are nanomaterials, whose unique physicochemical properties make them interesting for a large number of industrial and biomedical applications. Their widespread use has raised concerns about human exposure, and several toxicological studies have been performed, although the studies focusing on nanomaterials' effect on DNA methylation are still limited. The aim of this review is to investigate the possible impact of nanomaterials on DNA methylation. From the 70 studies found eligible for data analysis, the majority were in vitro, with about half using cell models related to the lungs. Among the in vivo studies, several animal models were used, but most were mice models. Only two studies were performed on human exposed populations. Global DNA methylation analyses was the most frequently applied approach. Although no trend towards hypo- or hyper-methylation could be observed, the importance of this epigenetic mechanism in the molecular response to nanomaterials is evident. Furthermore, methylation analysis of target genes and, particularly, the application of comprehensive DNA methylation analysis techniques, such as genome-wide sequencing, allowed identifying differentially methylated genes after nanomaterial exposure and affected molecular pathways, contributing to the understanding of their possible adverse health effects.

10.
Pathol Res Pract ; 245: 154463, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37086631

RESUMEN

Hypoxia contributes to the tumorigenesis and metastasis of the tumor. However, the detailed mechanisms underlying hypoxia and kidney renal clear cell carcinoma (KIRC) development and progression remain unclear. Here, we investigated the role of the system HIG1 hypoxia inducible domain family member 1 A (HIGD1A) in the proliferation and metastasis of KIRC and elucidated the underlying molecular mechanisms. The expression of HIGD1A is significantly downregulated in KIRC due to promoter hypermethylation. HIGD1A could serve as a valuable diagnostic biomarker in KIRC. In addition, ectopic overexpression of HIGD1A significantly suppressed the growth and invasive capacity of KIRC cells in vitro under normal glucose conditions. Interestingly, the suppressive efficacy in invasion is much more significant when depleted glucose, but not in proliferation. Furthermore, mRNA expression of HIGD1A positively correlates with CDH1 and EPCAM, while negatively correlated with VIM and SPARC, indicating that HIGD1A impedes invasion of KIRC by regulating epithelial-mesenchymal transition (EMT). Our data suggest that HIGD1A is a potential diagnostic biomarker and tumor suppressor in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Biomarcadores , Carcinoma de Células Renales/patología , ADN , Riñón/patología , Neoplasias Renales/patología
11.
Biomark Res ; 11(1): 32, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941700

RESUMEN

BACKGROUND: Recent massive sequencing studies have revealed that SWI/SNF complexes are among the most frequently altered functional entities in solid tumors. However, the role of SWI/SNF in acute myeloid leukemia is poorly understood. To date, SWI/SNF complexes are thought to be oncogenic in AML or, at least, necessary to support leukemogenesis. However, mutation patterns in SWI/SNF genes in AML are consistent with a tumor suppressor role. Here, we study the SWI/SNF subunit BCL7A, which has been found to be recurrently mutated in lymphomas, but whose role in acute myeloid malignancies is currently unknown. METHODS: Data mining and bioinformatic approaches were used to study the mutational status of BCL7A and the correlation between BCL7A expression and promoter hypermethylation. Methylation-specific PCR, bisulfite sequencing, and 5-aza-2'-deoxycytidine treatment assays were used to determine if BCL7A expression was silenced due to promoter hypermethylation. Cell competition assays after BCL7A expression restoration were used to assess the role of BCL7A in AML cell line models. Differential expression analysis was performed to determine pathways and genes altered after BCL7A expression restoration. To establish the role of BCL7A in tumor development in vivo, tumor growth was compared between BCL7A-expressing and non-expressing mouse xenografts using in vivo fluorescence imaging. RESULTS: BCL7A expression was inversely correlated with promoter methylation in three external cohorts: TCGA-LAML (N = 160), TARGET-AML (N = 188), and Glass et al. (2017) (N = 111). The AML-derived cell line NB4 silenced the BCL7A expression via promoter hypermethylation. Ectopic BCL7A expression in AML cells decreased their competitive ability compared to control cells. Additionally, restoration of BCL7A expression reduced tumor growth in an NB4 mouse xenograft model. Also, differential expression analysis found that BCL7A restoration altered cell cycle pathways and modified significantly the expression of genes like HMGCS1, H1-0, and IRF7 which can help to explain its tumor suppressor role in AML. CONCLUSIONS: BCL7A expression is silenced in AML by promoter methylation. In addition, restoration of BCL7A expression exerts tumor suppressor activity in AML cell lines and xenograft models.

12.
Kaohsiung J Med Sci ; 39(3): 278-289, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36606584

RESUMEN

Much is known about the significance of lycorine, a natural alkaloid, in combating various types of cancer, including breast cancer (BC), but whether it participates in regulating tamoxifen (TAM) resistance and its underlying mechanism remain to be elucidated. Tamoxifen-resistant (TAMR) BC cells were first established by continuously exposed to increasing concentrations of TAM. Levels of targeted gene including HOXD antisense growth-associated lncRNA (HAGLR) and Vestigial like family member 4 (VGLL4) were analyzed by qRT-PCR and western blot, respectively. Cell proliferation ability was assessed by MTT and EdU assays. Flow cytometry was carried out to evaluate the apoptosis. VGLL4 promoter methylation was examined using methylation specific PCR (MSP). The role of HAGLR acting on the expression of VGLL4 via DNA hypermethylation was confirmed by RNA immunoprecipitation (RIP). Here, we reported that lycorine administration reduced the survival ratio of TAMR BC cells, decreased the IC50 of TAM, and strengthened TAM-induced apoptosis. HAGLR, observed to be highly expressed in TAMR BC cells, was identified to be a downstream effector of lycorine, of which overexpression abolished lycorine-mediated TAMR inhibition. VGLL4 served as a target of HAGLR in regulating lycorine-mediated suppression on tamoxifen resistance of TAMR BC cells. Mechanistically, HAGLR epigenetically suppressed VGLL4 expression via DNA methyltransferase 1 (DNMT1)-mediated DNA hypermethylation. Taken together, our data highlights the pivotal role of lycorine in TAM resistance of BC, which may provide a potential agent for improving the effectiveness and efficacy of BC resistance.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Apoptosis/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , ADN/farmacología , ADN/uso terapéutico , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Factores de Transcripción/genética
13.
Biochem Biophys Res Commun ; 644: 162-170, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36669384

RESUMEN

Hypoxia or low oxygen tension causes changes in the structure and functional phenotype of the endothelial progenitor cells (EPCs). EPCs are found to be involved in angiogenesis and vascular repair. However, EPC's role in cell-matrix adhesion under hypoxia conditions is not clearly established. Nitric oxide (NO) exerts a wide range of biological functions, especially in regulating the mobilization and vascular repair of EPCs. In contrast, the link between NO and its role in cell-matrix deadhesion under hypoxia is not studied yet. Here, we investigated the protective role of NO in hypoxia-induced cell-matrix deadhesion of EPCs through an epigenetic mechanism. The EPCs were exposed to 2% hypoxia in the presence or absence of 10 µM Spermine NONOate (NO donor). The result demonstrates that hypoxia exposure intensified mitochondrial oxidative damage and energy defects. Using miScript miRNA qPCR array-based screening, the study found miR-148 as a novel target of hypoxia-induced DNMT1 activation. Mechanistically, the study discovered that hypoxia suppressed miR-148 levels and stimulated EPCs cell-matrix deadhesion via increasing DNMT1 mediated Integrin alpha-5 (ITGA5) CpG promoter hypermethylation. Treatment with a mitochondria-targeted antioxidant, MitoTEMPO, or epigenetic DNMT inhibitor, 5'-azacitidine, or miR-148 overexpression in hypoxic EPCs culture, prevented the cell-matrix deadhesion compared to hypoxic EPCs. Further, treatment of spNO or transient expression of eNOS-GFP attenuated hypoxia-induced cell-matrix deadhesion via inhibition of ITGA5 CpG island promoter methylation. In conclusion, the study provides evidence that NO is essential for cell-matrix adhesion of EPCs by epigenetically mitigating ITGA5 CpG promoter hypermethylation under hypoxia conditions. This finding uncovers the previously undefined mechanism of NO-mediated diminution of hypoxia-induced cell-matrix deadhesion and dysfunction induced by low oxygen tension.


Asunto(s)
Células Progenitoras Endoteliales , MicroARNs , Humanos , Azacitidina , Uniones Célula-Matriz/metabolismo , Células Cultivadas , Desmetilación , Hipoxia/metabolismo , Integrinas/metabolismo , MicroARNs/genética , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Islas de CpG
14.
Epigenomes ; 6(4)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547252

RESUMEN

TBX15, which encodes a differentiation-related transcription factor, displays promoter-adjacent DNA hypermethylation in myoblasts and skeletal muscle (psoas) that is absent from non-expressing cells in other lineages. By whole-genome bisulfite sequencing (WGBS) and enzymatic methyl-seq (EM-seq), these hypermethylated regions were found to border both sides of a constitutively unmethylated promoter. To understand the functionality of this DNA hypermethylation, we cloned the differentially methylated sequences (DMRs) in CpG-free reporter vectors and tested them for promoter or enhancer activity upon transient transfection. These cloned regions exhibited strong promoter activity and, when placed upstream of a weak promoter, strong enhancer activity specifically in myoblast host cells. In vitro CpG methylation targeted to the DMR sequences in the plasmids resulted in 86−100% loss of promoter or enhancer activity, depending on the insert sequence. These results as well as chromatin epigenetic and transcription profiles for this gene in various cell types support the hypothesis that DNA hypermethylation immediately upstream and downstream of the unmethylated promoter region suppresses enhancer/extended promoter activity, thereby downmodulating, but not silencing, expression in myoblasts and certain kinds of skeletal muscle. This promoter-border hypermethylation was not found in cell types with a silent TBX15 gene, and these cells, instead, exhibit repressive chromatin in and around the promoter. TBX18, TBX2, TBX3 and TBX1 display TBX15-like hypermethylated DMRs at their promoter borders and preferential expression in myoblasts. Therefore, promoter-adjacent DNA hypermethylation for downmodulating transcription to prevent overexpression may be used more frequently for transcription regulation than currently appreciated.

15.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499753

RESUMEN

This study aimed at analyzing the DNA methylation pattern and TP53 mutation status of intrinsic breast cancer (BC) subtypes for improved characterization and survival prediction. DNA methylation of 17 genes was tested by methylation-specific PCR in 116 non-familial BRCA mutation-negative BC and 29 control noncancerous cases. At least one gene methylation was detected in all BC specimens and a 10-gene panel statistically significantly separated tumors from noncancerous breast tissues. Methylation of FILIP1L and MT1E was predominant in triple-negative (TN) BC, while other BC subtypes were characterized by RASSF1, PRKCB, MT1G, APC, and RUNX3 hypermethylation. TP53 mutation (TP53-mut) was found in 38% of sequenced samples and mainly affected TN BC cases (87%). Cox analysis revealed that TN status, age at diagnosis, and RUNX3 methylation are independent prognostic factors for overall survival (OS) in BC. The combinations of methylated biomarkers, RUNX3 with MT1E or FILIP1L, were also predictive for shorter OS, whereas methylated FILIP1L was predictive of a poor outcome in the TP53-mut subgroup. Therefore, DNA methylation patterns of specific genes significantly separate BC from noncancerous breast tissues and distinguishes TN cases from non-TN BC, whereas the combination of two-to-three epigenetic biomarkers can be an informative tool for BC outcome predictions.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/patología , Metilación de ADN , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Mutación , Epigenómica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
16.
Cancer Biomark ; 35(3): 257-268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245370

RESUMEN

PURPOSE: Aberrant DNA methylation plays a crucial role in oral carcinogenesis. Our previous study demonstrated hypermethylation of DAPK1, LRPPRC, RAB6C, and ZNF471 promoters in patients with tongue squamous cell carcinoma compared with normal samples. Methylation profiling using salivary DNA is considered a non-invasive alternative to tissue samples. Hence, the present study tested the DNA methylation status of these four promoters as indicators of oral cancer progression. METHODS: We performed the bisulfite-based targeted next-generation sequencing of four candidate genes in saliva and tissue DNA from normal, premalignant, and squamous cell carcinoma subjects. The clinicopathological association, diagnostic, and prognostic utility of aberrant DNA methylation were evaluated using the TCGA-HNSCC dataset. Using the Xgboost algorithm and logistic regression, CpG sites were prioritized, and Receiver Operating Characteristic was generated. By Log-rank test and Kaplan-Meier (KM) curves, an association between methylation and overall survival (OS), disease-free interval (DFI), and progression-free interval (PFI) were computed. RESULTS: We identified all four genes as significantly hypermethylated in premalignant and malignant samples compared with normal samples. The methylation levels were comparable between saliva and tissue samples with an r-value of 0.6297 to 0.8023 and 0.7823 to 0.9419 between premalignant tissue vs. saliva and OC vs. saliva, respectively. We identified an inverse correlation between DAPK1, LRPPRC, RAB6C, and ZNF471 promoter methylation with their expression. A classifier of 8 differentially methylated CpG sites belonging to DAPK1, RAB6C, and ZNF471 promoters was constructed, showing an AUC of 0.984 to differentiate tumors from normal samples. The differential methylation status of DAPK1, LRPPRC, and ZNF71 promoters was prognostically important. Abnormal expression of all four genes was associated with immune infiltration. CONCLUSIONS: Thus, methylation analysis of these candidate CpG sites from saliva can be helpful as a non-invasive tool for the clinical management of OC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Lengua , Humanos , Carcinoma de Células Escamosas/genética , Islas de CpG/genética , ADN , Metilación de ADN , Neoplasias de Cabeza y Cuello/genética , Proteínas de Unión al GTP rab , Neoplasias de la Lengua/genética , Saliva
17.
ACS Nano ; 16(8): 12695-12710, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35939651

RESUMEN

Fas ligand (FasL), expressed on the surface of activated cytotoxic T lymphocytes (CTLs), is the physiological ligand for the cell surface death receptor, Fas. The Fas-FasL engagement initiates diverse signaling pathways, including the extrinsic cell death signaling pathway, which is one of the effector mechanisms that CTLs use to kill tumor cells. Emerging clinical and experimental data indicate that Fas is essential for the efficacy of CAR-T cell immunotherapy. Furthermore, loss of Fas expression is a hallmark of human melanoma. We hypothesize that restoring Fas expression in tumor cells reverses human melanoma resistance to T cell cytotoxicity. DNA hypermethylation, at the FAS promoter, down-regulates FAS expression and confers melanoma cell resistance to FasL-induced cell death. Forced expression of Fas in tumor cells overcomes melanoma resistance to FasL-induced cell death in vitro. Lipid nanoparticle-encapsulated mouse Fas-encoding plasmid therapy eliminates Fas+ tumor cells and suppresses established melanoma growth in immune-competent syngeneic mice. Similarly, lipid nanoparticle-encapsulated human FAS-encoding plasmid (hCOFAS01) therapy significantly increases Fas protein levels on tumor cells of human melanoma patient-derived xenograft (PDX) and suppresses the established human melanoma PDX growth in humanized NSG mice. In human melanoma patients, FasL is expressed in activated and exhausted T cells, Fas mRNA level positively correlates with melanoma patient survival, and nivolumab immunotherapy increases FAS expression in tumor cells. Our data demonstrate that hCOFAS01 is an effective immunotherapeutic agent for human melanoma therapy with dual efficacy in increasing tumor cell FAS expression and in enhancing CTL tumor infiltration.


Asunto(s)
Melanoma , Receptor fas , Humanos , Ratones , Animales , Receptor fas/genética , Receptor fas/metabolismo , Citotoxicidad Inmunológica/genética , Células Tumorales Cultivadas , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Linfocitos T Citotóxicos , Melanoma/patología , Plásmidos/genética , Apoptosis
19.
Pathol Res Pract ; 236: 154007, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35810565

RESUMEN

Colorectal cancer is known as the third most common cancer in both women and men. Genetic and epigenetic changes are major players contributing to colorectal carcinogenesis. Regulator of G-protein signaling 10 (RGS10) is a member of the RGS proteins, which negatively regulate several signaling pathways including cell survival and proliferation. We and others have previously shown that RGS10 expression is modulated by epigenetic modifications in ovarian cancer and suppression of RGS10 partially contributes to chemoresistance. Here, we further analyzed the roles and regulation of RGS10 in colon adenocarcinoma (COAD), using broad bioinformatics tools. We analyzed the expression profiles, promoter methylation state, prognostic value and effect of a hypomethylating agent on RGS10 expression. Results showed that RGS10 expression is higher in normal colon tissues than in tumor tissues. In addition, there is a negative correlation between DNA methylation and RGS10 transcript expression. We also observed that gene expression and promoter methylation of RGS10 in colorectal carcinoma patients were differently expressed depending on the tumor stage and microsatellite stability. DNA methylation was significantly increased in 18 probes of RGS10, which belongs to the high-risk group in COAD. In addition, pharmacological inhibition of DNA methyltransferase with decitabine reduced the six CpGsite-specific RGS10 hypermethylation in COAD. We also experimentally confirmed that RGS10 promoter activity was inhibited by treatment with decitabine in the HT-29 colorectal cell line. We further showed that decitabine treatment increases the RGS10 transcript expression in three different colorectal carcinoma cell lines. These results suggest that RGS10 expression is suppressed in the development of colorectal cancer and inhibition of DNA methylation may contribute to increasing overall survival rates of COAD patients.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Ováricas , Proteínas RGS , Adenocarcinoma/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias Colorrectales/patología , Metilación de ADN/genética , Decitabina/metabolismo , Decitabina/farmacología , Decitabina/uso terapéutico , Femenino , Proteínas de Unión al GTP/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Neoplasias Ováricas/patología , Proteínas RGS/genética , Proteínas RGS/metabolismo , Tasa de Supervivencia
20.
Int J Biol Sci ; 18(6): 2583-2596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35414787

RESUMEN

Background: The current studies only indicated that long non-coding RNA (lncRNA) APCDD1L-AS1, as a novel lncRNA, may play a role in oral squamous cell carcinoma and lung cancer. However, its potential role in clear cell renal cell carcinoma (ccRCC) and its possible mechanism of action remain vague. Methods: TCGA-KIRC and GEO data and qRT-PCR and pyrosequencing results of clinical specimens were used to identify the expression level and DNA methylation status of APCDD1L-AS1. The effects of APCDD1L-AS1 overexpression on ccRCC growth and metastasis were determined by function experiments. Western blot and Tandem mass tags (TMT) were utilized to explore the relationship between APCDD1L-AS1 and VHL expression and its downstream underlying mechanisms. Results: The expression of APCDD1L-AS1 was downregulated in ccRCC. Decreased APCDD1L-AS1 expression was related to higher tumor stage and histological grade and shorter RFS (Relapse-free survival). Besides, APCDD1L-AS1 overexpression restrained the growth and metastasis of ccRCC cells in vitro and in vivo. Moreover, reduced APCDD1L-AS1 expression could be caused by DNA hypermethylation and loss of von Hippel Lindau (VHL) protein expression. Furthermore, the dysregulation of histones expression caused by APCDD1L-AS1 overexpression may be one of the important mechanisms to suppress the progression of ccRCC. Conclusion: APCDD1L-AS1 was able to inhibit the progression of ccRCC, and its decreased expression could be caused by DNA hypermethylation and loss of VHL protein expression. Therefore, APCDD1L-AS1 may serve as a new therapeutic target in the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Renales , Neoplasias de la Boca , ARN Largo no Codificante , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , ADN/metabolismo , Metilación de ADN/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Renales/metabolismo , Neoplasias de la Boca/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA