Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Forensic Sci Int Genet ; 69: 103002, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38176092

RESUMEN

Shedder status is defined as the propensity of an individual to leave DNA behind on touched items or surfaces and has been suggested as one of the major factors influencing DNA transfer. However, little is known about whether shedder status is a constant property of an individual across multiple measurements or when the environmental conditions are changed. We have assessed DNA depositions of six males on 20 occasions to acquire a reference data set and to classify the participants into high, intermediate, or low shedders. This data set was also used to investigate how the probability of a correct shedder status classification changed when the number of DNA deposition measurements increased. Individual sweat rates were measured with a VapoMeter and data regarding hygiene routines were collected through a questionnaire on each sampling occasion. Next, we investigated how changes in the experimental conditions such as seasonal variation, hygiene routines, the temperature of the touched object, and repeated handling of an object influenced the DNA shedding. Additionally, we assessed DNA collected from the face and from T-shirts worn by the six participants to explore whether shedder status may be associated with the relative amount of DNA obtained from other body parts. Our results indicate that shedder status is a stable property across different seasons and different temperatures of handled objects. The relative DNA amounts obtained from repeatedly handled tubes, worn T-shirts, and from faces reflected the shedder status of the participants. We suggest that an individual's shedder status is highly influenced by the DNA levels on other body parts than hands, accumulating on the palms by frequently touching e.g., the face or previously handled items harboring self-DNA. Assessing physiological differences between the participants revealed that there were no associations between DNA shedding and individual sweat rates.


Asunto(s)
ADN , Tacto , Masculino , Humanos , ADN/genética , Mano , Probabilidad , Dermatoglifia del ADN/métodos
2.
J Forensic Sci ; 69(2): 430-436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288847

RESUMEN

The ability to detect low level DNA brings with it the uncertainty of whether the detected DNA is a result of transfer. To address this uncertainty, a simulation study was conducted in which a mock illicit drug packet was placed into the personal bags of individuals. When the average transit time of the packets was increased from around 2 h to more than 14 h, the percentage of the DNA profiles recovered from the packets which could be attributed to the individuals increased greatly from 5.3% to 48.6%. We found that drug packers who were poor shedders could not be included as contributors to the DNA profiles from the drug packets at all and there was a higher chance that individuals other than themselves could be included as contributors to the DNA profile recovered from drug packets. We also found that it was equally likely that the drug packers who had direct contact with the drug packets and bag owners who did not, could be included as contributors to the DNA profiles recovered from the packets. The results in this study highlight the importance of taking into consideration the transit time of drug packet, the shedder status of the alleged packer and the history of an item, when evaluating DNA evidence in the context of illicit drug activities.


Asunto(s)
Dermatoglifia del ADN , Drogas Ilícitas , Humanos , ADN
3.
J Forensic Sci ; 68(4): 1292-1301, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37102619

RESUMEN

The shedder status of a person is an important consideration when evaluating probabilities of DNA transfer during activity-level assessments. As an extension of our previously published study, the shedder statuses of 38 individuals were reassessed 1 year later. The study found that shedder status may change over time for some individuals and was associated with one's gender, number of items touched, and mobile phone usage. In 29% of touch events, no DNA allele was detected and in 99% of touch events, the amount of DNA deposited was <2 ng. The study also found that in 0.6% of touch events, the participant could be excluded as a contributor of the observed DNA profile, with another person being included. Additionally, our investigations suggest that the current three-category system for shedder status classification may require further refinement to better represent the individuals' shedder status in a population.


Asunto(s)
ADN , Tacto , Humanos , ADN/análisis , Probabilidad , Dermatoglifia del ADN , Alelos
4.
Forensic Sci Int Genet ; 56: 102626, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34781198

RESUMEN

Due to improved laboratory techniques, touched surfaces and items are increasingly employed as sources of forensic DNA evidence. This has urged a need to better understand the mechanisms of DNA transfer between individuals. Shedder status (i.e. the propensity to leave DNA behind) has been identified as one major factor regulating DNA transfer. It is known that some individuals tend to shed more DNA than others, but the mechanisms behind shedder status are largely unknown. By comparing the amounts of DNA deposited from active hands (i.e. used "as usual") and inactive hands (i.e. not allowed to touch anything), we show that some of the self-DNA deposited from hands is likely to have accumulated on hands from other parts of the body or previously handled items (active hands: 2.1 ± 2.7 ng, inactive hands: 0.83 ± 1.1 ng, paired t-test: p = 0.014, n = 27 pairs of hands). Further investigation showed that individual levels of deposited DNA are highly associated with the level of DNA accumulation on the skin of the face (Pearson's correlation: r = 0.90, p < 0.00001 and Spearman's ranked correlation: rs = 0.56, p = 0.0016, n = 29). We hypothesized that individual differences in sebum secretion levels could influence the amount of DNA accumulation in facial areas, but no such correlation was seen (Pearson's correlation: r = - 0.13, p = 0.66, n = 14). Neither was there any correlation between DNA levels on hands or forehead and the time since hand or face wash. We propose that the amount of self-DNA deposited from hands is highly influenced by the individual levels of accumulated facial DNA, and that cells/DNA is often transferred to hands by touching or rubbing one's face.


Asunto(s)
Dermatoglifia del ADN , Tacto , ADN/genética , Mano , Humanos , Piel
5.
ACS Nano ; 9(1): 809-16, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25561163

RESUMEN

Deposition of linear DNA molecules is a critical step in many single-molecule genomic approaches including DNA mapping, fiber-FISH, and several emerging sequencing technologies. In the ideal situation, the DNA that is deposited for these experiments is absolutely linear and uniformly stretched, thereby enabling accurate distance measurements. However, this is rarely the case, and furthermore, current approaches for the capture and linearization of DNA on a surface tend to require complex surface preparation and large amounts of starting material to achieve genomic-scale mapping. This makes them technically demanding and prevents their application in emerging fields of genomics, such as single-cell based analyses. Here we describe a simple and extremely efficient approach to the deposition and linearization of genomic DNA molecules. We employ droplets containing as little as tens of picograms of material and simply drag them, using a pipet tip, over a polymer-coated coverslip. In this report we highlight one particular polymer, Zeonex, which is remarkably efficient at capturing DNA. We characterize the method of DNA capture on the Zeonex surface and find that the use of droplets greatly facilitates the efficient deposition of DNA. This is the result of a circulating flow in the droplet that maintains a high DNA concentration at the interface of the surface/solution. Overall, our approach provides an accessible route to the study of genomic structural variation from samples containing no more than a handful of cells.


Asunto(s)
Genoma Humano , Ácidos Nucleicos Inmovilizados/química , Fenómenos Mecánicos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación de Ácido Nucleico , Polímeros/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA