Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732885

RESUMEN

Delay-sensitive task offloading in a device-to-device assisted mobile edge computing (D2D-MEC) system with energy harvesting devices is a critical challenge due to the dynamic load level at edge nodes and the variability in harvested energy. In this paper, we propose a joint dynamic task offloading and CPU frequency control scheme for delay-sensitive tasks in a D2D-MEC system, taking into account the intricacies of multi-slot tasks, characterized by diverse processing speeds and data transmission rates. Our methodology involves meticulous modeling of task arrival and service processes using queuing systems, coupled with the strategic utilization of D2D communication to alleviate edge server load and prevent network congestion effectively. Central to our solution is the formulation of average task delay optimization as a challenging nonlinear integer programming problem, requiring intelligent decision making regarding task offloading for each generated task at active mobile devices and CPU frequency adjustments at discrete time slots. To navigate the intricate landscape of the extensive discrete action space, we design an efficient multi-agent DRL learning algorithm named MAOC, which is based on MAPPO, to minimize the average task delay by dynamically determining task-offloading decisions and CPU frequencies. MAOC operates within a centralized training with decentralized execution (CTDE) framework, empowering individual mobile devices to make decisions autonomously based on their unique system states. Experimental results demonstrate its swift convergence and operational efficiency, and it outperforms other baseline algorithms.

2.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687779

RESUMEN

With the widespread application of 5G technology, there has been a significant surge in wireless video service demand and video traffic due to the proliferation of smart terminal devices and multimedia applications. However, the complexity of terminal devices, heterogeneous transmission channels, and the rapid growth of video traffic present new challenges for wireless network-based video applications. Although scalable video coding technology effectively improves video transmission efficiency in complex networks, traditional cellular base stations may struggle to handle video transmissions for all users simultaneously, particularly in large-scale networks. To tackle this issue, we propose a scalable video multicast scheme based on user demand perception and Device-to-Device (D2D) communication, aiming to enhance the D2D multicast network transmission performance of scalable videos in cellular D2D hybrid networks. Firstly, we analyze user interests by considering their video viewing history and factors like video popularity to determine their willingness for video pushing, thereby increasing the number of users receiving multicast clusters. Secondly, we design a cluster head selection algorithm that considers users' channel quality, social parameters, and video quality requirements. Performance results demonstrate that the proposed scheme effectively attracts potential request users to join multicast clusters, increases the number of users in the clusters, and meets diverse user demands for video quality.

3.
Sensors (Basel) ; 23(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37631675

RESUMEN

This paper presents a detailed framework for adaptive low-complexity and power-efficient resource allocation in decentralized device-to-device (D2D) networks. The adopted system model considers that active devices can directly communicate via specified signaling channels. Each D2D receiver attempts to allocate its D2D resources by selecting a D2D transmitter and one of its spectral channels that can meet its performance target. The process is performed adaptively over successive packet durations with the objective of limiting the transmit power on D2D links while reducing the processing complexity. The proposed D2D link adaptation scheme is modeled and analyzed under generalized channel conditions. It considers the random impact of potential D2D transmitters as well as the random number of co-channel interference sources on each D2D link. Interference cancelation schemes are also addressed to alleviate co-channel interference, which can ease the D2D resource allocation process. Generalized formulations for the statistics of the resulting signal-to-interference plus noise ratio (SINR) of the proposed adaptation scheme are presented. Moreover, generic analytical results were developed for some important performance measures as well as processing load measures. They facilitate tradeoff studies between the achieved performance and the processing complexity of the proposed scheme. Insightful results for the distributions of SINRs on individual D2D links under specific fading models are shown in this paper. The results herein add enhancements to some previous contributions and can handle various practical constraints.

4.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299991

RESUMEN

Device-to-device (D2D) communication is a promising wireless communication technology which can effectively reduce the traffic load of the base station and improve the spectral efficiency. The application of intelligent reflective surfaces (IRS) in D2D communication systems can further improve the throughput, but the problem of interference suppression becomes more complex and challenging due to the introduction of new links. Therefore, how to perform effective and low-complexity optimal radio resource allocation is still a problem to be solved in IRS-assisted D2D communication systems. To this end, a low-complexity power and phase shift joint optimization algorithm based on particle swarm optimization is proposed in this paper. First, a multivariable joint optimization problem for the uplink cellular network with IRS-assisted D2D communication is established, where multiple DUEs are allowed to share a CUE's sub-channel. However, the proposed problem considering the joint optimization of power and phase shift, with the objective of maximizing the system sum rate and the constraints of the minimum user signal-to-interference-plus-noise ratio (SINR), is a non-convex non-linear model and is hard to solve. Different from the existing work, instead of decomposing this optimization problem into two sub-problems and optimizing the two variables separately, we jointly optimize them based on Particle Swarm Optimization (PSO). Then, a fitness function with a penalty term is established, and a penalty value priority update scheme is designed for discrete phase shift optimization variables and continuous power optimization variables. Finally, the performance analysis and simulation results show that the proposed algorithm is close to the iterative algorithm in terms of sum rate, but lower in power consumption. In particular, when the number of D2D users is four, the power consumption is reduced by 20%. In addition, compared with PSO and distributed PSO, the sum rate of the proposed algorithm increases by about 10.2% and 38.3%, respectively, when the number of D2D users is four.


Asunto(s)
Algoritmos , Comunicación , Simulación por Computador , Ejercicio Físico , Inteligencia
5.
J Ambient Intell Humaniz Comput ; 14(6): 7381-7398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36281429

RESUMEN

The world we live in has been taken quite surprisingly by the outbreak of a novel virus namely SARS-CoV-2. COVID-19 i.e. the disease associated with the virus, has not only shaken the world economy due to enforced lockdown but has also saturated the public health care systems of even most advanced countries due to its exponential spread. The fight against COVID-19 pandemic will continue until majority of world's population get vaccinated or herd immunity is achieved. Many researchers have exploited the Artificial intelligence (AI) knacks based IoT architecture for early detection and monitoring of potential COVID-19 cases to control the transmission of the virus. However, the main cause of the spread is that people infected with COVID-19 do not show any symptoms and are asymptomatic but can still transmit virus to the masses. Researcher have introduced contact tracing applications to automatically detect contacts that can be infected by the index case. However, these fully automated contact tracing apps have not been accepted due to issues like privacy and cross-app compatibility. In the current study, an IoT based COVID-19 detection and monitoring system with semi-automated and improved contact tracing capability namely COVICT has been presented with application of real-time data of symptoms collected from individuals and contact tracing. The deployment of COVICT, the prediction of infected persons can be made more effective and contaminated areas can be identified to mitigate the further propagation of the virus by imposing Smart Lockdown. The proposed IoT based architecture can be quite helpful for regulatory authorities for policy making to fight COVID-19.

6.
Sensors (Basel) ; 22(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36146350

RESUMEN

Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme.

7.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015782

RESUMEN

With the significant rise in demand for network utilization, such as data transmission and device-to-device (D2D) communication, fifth-generation (5G) networks have been proposed to fill the demand. Deploying 5G enhances the utilization of network channels and allows users to exploit licensed channels in the absence of primary users (PUs). In this paper, a hybrid route selection mechanism is proposed, and it allows the central controller (CC) to evaluate the route map proactively in a centralized manner for source nodes. In contrast, source nodes are enabled to make their own decisions reactively and select a route in a distributed manner. D2D communication is preferred, which helps networks to offload traffic from the control plane to the data plane. In addition to the theoretical analysis, a real testbed was set up for the proof of concept; it was composed of eleven nodes with independent processing units. Experiment results showed improvements in traffic offloading, higher utilization of network channels, and a lower interference level between primary and secondary users. Packet delivery ratio and end-to-end delay were affected due to a higher number of intermediate nodes and the dynamicity of PU activities.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Comunicación
8.
Sensors (Basel) ; 22(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35746167

RESUMEN

Establishing a wireless communication network (WCN) is critical to saving people's lives during disasters. Since the user equipment (UE) must transfer their information to the functioning area, their batteries will be significantly drained. Thus, technologies that can compensate for battery power consumption, such as the energy harvesting (EH) strategy, are highly required. This paper proposes a framework that employs EH at the main cluster head (MCH) selected by the enhanced clustering technique (CFT) and simultaneously transmits information and power wirelessly to prolong the lifetime of the energy-constrained network. MCH harvests energy from the radio frequency signal via the relay station (RS) and uses the harvested energy for D2D communications. The suggested framework was evaluated by analyzing the EH outage probability and estimating the energy efficiency performance, which is expected to improve the stability of the network. Compared to the UAV scenario, the simulation findings show that when RS is in its optimal location, it enhances the network EH outage probability performance by 26.3%. Finally, integrating CFT with wireless communications links into cellular networks is an effective technique for maintaining communication services for mission-critical applications.


Asunto(s)
Desastres , Análisis por Conglomerados , Simulación por Computador , Drenaje , Humanos , Fenómenos Físicos
9.
Entropy (Basel) ; 24(2)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35205594

RESUMEN

Energy Harvesting (EH) is a promising paradigm for 5G heterogeneous communication. EH-enabled Device-to-Device (D2D) communication can assist devices in overcoming the disadvantage of limited battery capacity and improving the Energy Efficiency (EE) by performing EH from ambient wireless signals. Although numerous research works have been conducted on EH-based D2D communication scenarios, the feature of EH-based D2D communication underlying Air-to-Ground (A2G) millimeter-Wave (mmWave) networks has not been fully studied. In this paper, we considered a scenario where multiple Unmanned Aerial Vehicles (UAVs) are deployed to provide energy for D2D Users (DUs) and data transmission for Cellular Users (CUs). We aimed to improve the network EE of EH-enabled D2D communications while reducing the time complexity of beam alignment for mmWave-enabled D2D Users (DUs). We considered a scenario where multiple EH-enabled DUs and CUs coexist, sharing the full mmWave frequency band and adopting high-directive beams for transmitting. To improve the network EE, we propose a joint beamwidth selection, power control, and EH time ratio optimization algorithm for DUs based on alternating optimization. We iteratively optimized one of the three variables, fixing the other two. During each iteration, we first used a game-theoretic approach to adjust the beamwidths of DUs to achieve the sub-optimal EE. Then, the problem with regard to power optimization was solved by the Dinkelbach method and Successive Convex Approximation (SCA). Finally, we performed the optimization of the EH time ratio using linear fractional programming to further increase the EE. By performing extensive simulation experiments, we validated the convergence and effectiveness of our algorithm. The results showed that our proposed algorithm outperformed the fixed beamwidth and fixed power strategy and could closely approach the performance of exhaustive search, particle swarm optimization, and the genetic algorithm, but with a much reduced time complexity.

10.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161802

RESUMEN

To supporting a wider and diverse range of applications, device-to-device (D2D) communication is a key enabler in heterogeneous cellular networks (HetCNets). It plays an important role in fulfilling the performance and quality of service (QoS) requirements for 5G networks and beyond. D2D-enabled cellular networks enable user equipment (UE) to communicate directly, without any or with a partial association with base stations (eNBs). Interference management is one of the critical and complex issues in D2D-enabled HetCNets. Despite the wide adoption of D2D communications, there are very few researchers addressing the problems of mode selection (MS), as well as resource allocation for mutual interference in three-tier cellular networks. In this paper, we first identify and analyze three key factors, namely outage probability, signal-to-interference and noise ratio (SINR), and cell density that influence the performance of D2D-enabled HetCNets. We then propose a dynamic algorithm based on a distance-based approach to minimize the interference and to guarantee QoS for both cellular and D2D communication links. Results obtained show that outage probability is improved by 35% and 49% in eNB and SCeNB links, respectively, when compared with traditional neighbor-based methods. The findings reported in this paper provide some insights into interference management in D2D communications that can help network researchers and engineers contribute to further developing next-generation cellular networks.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Comunicación , Probabilidad , Relación Señal-Ruido
11.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203912

RESUMEN

In Public Safety Networks (PSNs), the conservation of on-scene device energy is critical to ensure long term connectivity to first responders. Due to the limited transmit power, this connectivity can be ensured by enabling continuous cooperation among on-scene devices through multipath routing. In this paper, we present a Reinforcement Learning (RL) and Unmanned Aerial Vehicle- (UAV) aided multipath routing scheme for PSNs. The aim is to increase network lifetime by improving the Energy Efficiency (EE) of the PSN. First, network configurations are generated by using different clustering schemes. The RL is then applied to configure the routing topology that considers both the immediate energy cost and the total distance cost of the transmission path. The performance of these schemes are analyzed in terms of throughput, energy consumption, number of dead nodes, delay, packet delivery ratio, number of cluster head changes, number of control packets, and EE. The results showed an improvement of approximately 42% in EE of the clustering scheme when compared with non-clustering schemes. Furthermore, the impact of UAV trajectory and the number of UAVs are jointly analyzed by considering various trajectory scenarios around the disaster area. The EE can be further improved by 27% using Two UAVs on Opposite Axis of the building and moving in the Opposite directions (TUOAO) when compared to a single UAV scheme. The result showed that although the number of control packets in both the single and two UAV scenarios are comparable, the total number of CH changes are significantly different.


Asunto(s)
Redes de Comunicación de Computadores , Desastres , Algoritmos , Análisis por Conglomerados
12.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807859

RESUMEN

Narrowband-Internet of Things (NB-IoT) displays high-quality connectivity underpinned by fifth-generation (5G) networks to cover a wide array of IoT applications. The devices' development and integration into different smart systems require permanent control, supervision, and the study of power consumption models to determine the performance of the network topology and allow for the measurement of the efficiency of the network topology's application. This paper reports on an architecture and open-sourced simulation that was developed to study NB-IoT in Device-to-Device (D2D) mode, which includes the Physical (PHY), network, and application layers, as well as a queuing model, the model for uplink and downlink delays, the throughput, the overall NB-IoT D2D network performance, and the energy consumption based on the Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. Our results prove that the suggested framework contributes to a reduction in power consumption, a minimization of queuing delays, a decrease in communication cost, a reduction in inter-cluster collisions, and the prevention of attacks from malicious nodes. Consequently, the framework manages the battery's State of Charge (SOC), improves the battery's State of Health (SOH), and maximizes the whole network lifetime. The proposed framework, the code of which has been open-sourced, can be effectively used for scientific research and development purposes to evaluate different parameters and improve the planning of NB-IoT networks.

13.
Sensors (Basel) ; 20(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993039

RESUMEN

Next generation cellular systems need efficient content-distribution schemes. Content-sharing via Device-to-Device (D2D) clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. In this article, we utilize Content-Centric Networking and Network Virtualization to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multifactor clustering algorithm is proposed for grouping the D2D User Equipment (DUEs) sharing a common interest. The proposed algorithm is evaluated in terms of energy efficiency, area spectral efficiency, and throughput. The effect of the number of clusters on these performance parameters is also discussed. The proposed algorithm has been further modified to allow for a tradeoff between fairness and other performance parameters. A comprehensive simulation study demonstrates that the proposed clustering algorithm is more flexible and outperforms several classical and state-of-the-art algorithms.

14.
Sensors (Basel) ; 20(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526917

RESUMEN

Energy efficiency (EE) is a critical performance indicator for the device-to-device (D2D) communication underlaying cellular networks due to limited battery capacity and serious interference between user equipment. In this study, we proposed a power control and channel allocation scheme for the EE maximization of the D2D pairs, while jointly reusing uplink-downlink resources and guaranteeing the cellular users' (CUs) quality of service (QoS). The formulated problem was a mixed-integer nonlinear programming (MINLP) problem, which is generally an unsolved non-deterministic polynomial-time hardness (NP-hard) problem within polynomial time. To make it tractable to solve, the original problem was divided into two sub-problems: power control and channel allocation. A power control algorithm based on the Lambert W function was proposed to maximize the EE of the individual D2D pair. Assigning either an uplink or downlink resource to reuse, the EE of each D2D pair was calculated using the power control results. A channel allocation scheme based on the Kuhn-Munkres algorithm utilized the EE weights to optimize the overall EE of the D2D pairs. The simulation results verified the theoretical analysis and proved that the proposed algorithm could remarkably improve the EE of D2D pairs while guaranteeing the QoS of the CUs.

15.
Sensors (Basel) ; 20(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326250

RESUMEN

Increased data traffic resulting from the increase in the deployment of connected vehicles has become relevant in vehicular social networks (VSNs). To provide efficient communication between connected vehicles, researchers have studied device-to-device (D2D) communication. D2D communication not only reduces the energy consumption and loads of the system but also increases the system capacity by reusing cellular resources. However, D2D communication is highly affected by interference and therefore requires interference-management techniques, such as mode selection and power control. To make an optimal mode selection and power control, it is necessary to apply reinforcement learning that considers a variety of factors. In this paper, we propose a reinforcement-learning technique for energy optimization with fifth-generation communication in VSNs. To achieve energy optimization, we use centralized Q-learning in the system and distributed Q-learning in the vehicles. The proposed algorithm learns to maximize the energy efficiency of the system by adjusting the minimum signal-to-interference plus noise ratio to guarantee the outage probability. Simulations were performed to compare the performance of the proposed algorithm with that of the existing mode-selection and power-control algorithms. The proposed algorithm performed the best in terms of system energy efficiency and achievable data rate.

16.
Sensors (Basel) ; 20(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023955

RESUMEN

Wireless device-to-device (D2D) caching networks are studied, in which n nodes are distributed uniformly at random over the network area. Each node caches M files from the library of size m ≥ M and independently requires a file from the library. Each request will be served by cooperative D2D transmission from other nodes having the requested file in their cache memories. In many practical sensor or Internet of things (IoT) networks, there may exist simple sensor or IoT devices that are not able to perform real-time rate and power control based on the reported channel quality information (CQI). Hence, it is assumed that each node transmits a file with a fixed rate and power so that an outage is inevitable. To improve the outage-based throughput, a cache-enabled interference cancellation (IC) technique is proposed for cooperative D2D file delivery which first performs IC, utilizing cached files at each node as side information, and then performs successive IC of strongly interfering files. Numerical simulations demonstrate that the proposed scheme significantly improves the overall throughput and, furthermore, such gain is universally achievable for various caching placement strategies such as random caching and probabilistic caching.

17.
Sensors (Basel) ; 20(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861500

RESUMEN

This paper demonstrates the use of Universal Software Radio Peripheral (USRP), together with Raspberry Pi3 B+ (RP3) as the brain (or the decision making engine), to develop a distributed wireless network in which nodes can communicate with other nodes independently and make decision autonomously. In other words, each USRP node (i.e., sensor) is embedded with separate processing units (i.e., RP3), which has not been investigated in the literature, so that each node can make independent decisions in a distributed manner. The proposed testbed in this paper is compared with the traditional distributed testbed, which has been widely used in the literature. In the traditional distributed testbed, there is a single processing unit (i.e., a personal computer) that makes decisions in a centralized manner, and each node (i.e., USRP) is connected to the processing unit via a switch. The single processing unit exchanges control messages with nodes via the switch, while the nodes exchange data packets among themselves using a wireless medium in a distributed manner. The main disadvantage of the traditional testbed is that, despite the network being distributed in nature, decisions are made in a centralized manner. Hence, the response delay of the control message exchange is always neglected. The use of such testbed is mainly due to the limited hardware and monetary cost to acquire a separate processing unit for each node. The experiment in our testbed has shown the increase of end-to-end delay and decrease of packet delivery ratio due to software and hardware delays. The observed multihop transmission is performed using device-to-device (D2D) communication, which has been enabled in 5G. Therefore, nodes can either communicate with other nodes via: (a) a direct communication with the base station at the macrocell, which helps to improve network performance; or (b) D2D that improve spectrum efficiency, whereby traffic is offloaded from macrocell to small cells. Our testbed is the first of its kind in this scale, and it uses RP3 as the distributed decision-making engine incorporated into the USRP/GNU radio platform. This work provides an insight to the development of a 5G network.

18.
Sensors (Basel) ; 19(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331113

RESUMEN

Device-to-device (D2D) communication is a promising technique for direct communication to enhance the performance of cellular networks. In order to improve the system throughput and utilization of spectrum resource, a resource allocation mechanism for D2D underlaid communication is proposed in this paper where D2D pairs reuse the resource blocks (RBs) of cellular uplink users, adopting a matching matrix to disclose the results of resource allocation. Details of the proposed resource allocation mechanism focused are listed as: the transmit power of D2D pairs are determined by themselves with the distributed power control method, and D2D pairs are assigned to different clusters that are the intended user sets of RBs, according to the threshold of the signal-to-interference-plus-noise ratio (SINR). The weighted efficiency interference-aware (WE-I-A) algorithm is proposed and applied subsequently to promote the system throughput by optimizing the matching of D2D pairs and RBs, where each D2D pair is weighted based on the SINR to compete for the priority of RBs fairly. Simulation results demonstrate that the proposed algorithm contributes to a good performance on the system throughput even if the uplink state is limited.

19.
Sensors (Basel) ; 19(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669382

RESUMEN

In the last few years, one of the main characteristics of the current technological development is the constantly increasing need for data exchange among various types of devices, both mobile and fixed. Within this context, the direct communications between devices has the potential to create new, location-based peer-to-peer applications and services, as well as to help offload traffic from the congested traditional cellular networks. The main hurdles for this kind of Device to Device (D2D) communications are throughput, spectral efficiency, latency and fairness. Most of these hurdles can be overcome by the use of the new Social IoT (SIoT) paradigm, of things and people involved together in the network, guided autonomously by social relationships following the rules set by their owners. This paper aims to investigate the state of the art of socially-driven D2D communications. Upon an initial analysis, we perform an in-deep literature investigation of the main directions in which social ties can improve D2D communication, draw conclusions and identify the research topics left open.


Asunto(s)
Redes de Comunicación de Computadores , Red Social , Encuestas y Cuestionarios , Algoritmos , Humanos
20.
Sensors (Basel) ; 18(8)2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104533

RESUMEN

Wireless multimedia sensor networks (WMSNs) have been improved with the increase of multimedia data. In WMSNs, a centralization problem can occur because of large-size multimedia data. It is necessary to consider device-to-device (D2D) communication. We focus on D2D WMSN based on cellular networks. Sensors in the D2D WMSN can non-orthogonally use a cellular link, which is a wireless communication channel between a sensor and an aggregator, and a D2D link, which is the channel between sensors. As a result, it has more complex interference environments than an ordinary system. Therefore, it is a key factor to manage the varying inter-cell interference effectively for throughput improvement. We propose an interference mitigation scheme that can be applied to D2D WMSN. In the proposed scheme, a cell is separated into six zones and orthogonal frequency is allocated to each zone for cellular links. The frequencies allocated to cellular links are reused by D2D links of neighboring zones. The simulation results show that the throughput of the proposed scheme increases two times compared to a static frequency allocation scheme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA