Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(31): e2312104, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441363

RESUMEN

Owing to the improved charge separation and maximized redox capability of the system, Step-scheme (S-scheme) heterojunctions have garnered significant research attention for efficient photocatalysis of H2 evolution. In this work, an innovative linear donor-acceptor (D-A) conjugated polymer fluorene-alt-(benzo-thiophene-dione) (PFBTD) is coupled with the CdS nanosheets, forming the organic-inorganic S-scheme heterojunction. The CdS/PFBTD (CP) composite exhibits an impressed hydrogen production rate of 7.62 mmol g-1 h-1 without any co-catalysts, which is ≈14 times higher than pristine CdS. It is revealed that the outstanding photocatalytic performance is attributed to the formation of rapid electron transfer channels through the interfacial Cd─O bonding as evidenced by the density functional theory (DFT) calculations and in situ X-ray photoelectron spectroscopy (XPS) analysis. The charge transfer mechanism involved in S-scheme heterojunctions is further investigated through the photo-irradiated Kelvin probe force microscopy (KPFM) analysis. This work provides a new point of view on the mechanism of interfacial charge transfer and points out the direction of designing superior organic-inorganic S-scheme heterojunction photocatalysts.

2.
Angew Chem Int Ed Engl ; 60(37): 20483-20488, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34235851

RESUMEN

The role of solution aggregates on the charge transport process of conjugated polymers in electronic devices has gained increasing attention; however, the correlation of the charge carrier mobilities between the solution aggregates and the solid-state films remains elusive. Herein, three polymers, FBDOPV-2T, FBDOPV-2F2T, and FBDOPV-4F2T, are designed and synthesized with distinct aggregation behavior in solution. By combining contact-free ultrafast terahertz (THz) spectroscopy and field-effect transistor measurements, we track the charge carrier mobility of the aggregates of these polymers from the solution to the thin-film state. Remarkably, the mobility of these three polymers is found to follow nearly the same trend (FBDOPV-2T>FBDOPV-2F2T≫FBDOPV-4F2T) in both solutions and thin-film states. The quantitative mobility correlation indicates that the charge transport properties of solution aggregates play a critical role in determining the thin-film charge transport properties and final device performance. Our results highlight the importance of investigating and controlling solution aggregation structures towards efficient organic electronic devices.

3.
Angew Chem Int Ed Engl ; 60(17): 9635-9641, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33543821

RESUMEN

Donor-acceptor (D-A) conjugated polymers often possess a significant frontier molecular orbital overlap because of the conjugation elongation, leading to no thermally activated delayed fluorescence (TADF) caused by a large singlet-triplet energy splitting (▵EST ). Herein a novel steric locking strategy is proposed by incorporating methyl groups into D-A conjugated polymers. Benefitting from the methyl hindrance, the torsion between the donor and acceptor can be well tuned to form a sterically-locked conformation, so that the unwanted relaxation toward planarity and thus conjugation elongation is prevented to boost hole-electron separation. The resultant D-A conjugated polymer achieves an extremely low ΔEST of 0.09 eV to enable efficient TADF. The corresponding doped and non-doped devices are fabricated via a solution process, revealing a record-high external quantum efficiency (EQE) of 24.0 % (79.4 cd A-1 , 75.0 lm W-1 ) and 15.3 % (50.9 cd A-1 , 47.3 lm W-1 ).

4.
J Mol Model ; 23(8): 225, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28710572

RESUMEN

Donor-acceptor conjugated polymers have been successfully applied in bulk heterojunction solar cell devices. Tuning their donor and acceptor units allows the design of new polymers with desired electronic and optical properties. Here, to screen new candidate polymers based on a newly synthesized donor unit, dithieo[2,3-d:2',3'-d']naphtho[1,2-b:3,4-b']dithiophene (NDT), a series of model polymers with different acceptor units were designed and denoted NDT-A0 to NDT-A12, and the structures and optical properties of those polymers were investigated using DFT and TDDFT calculations. The results of the calculations revealed that the electronic and optical properties of these polymers depend on the acceptor unit present; specifically, their HOMO energies ranged from -4.89 to -5.38 eV, their HOMO-LUMO gaps ranged from 1.30 to 2.80 eV, and their wavelengths of maximum absorption ranged from 538 to 1212 nm. The absorption spectra of NDT-A1 to NDT-A6, NDT-A8, NDT-A9, and NDT-A12 occur within the visible region (<900 nm), indicating that these polymers are potential candidates for use in solar cells. On the other hand, the absorption spectra of NDT-A7, NDT-A10, and NDT-A11 extend much further into the near-infrared region, implying that they absorb near-infrared light. These polymers could meet the requirements of donor units for use in tandem and ternary solar cells. Graphical abstract Theoretical calculations by TD-DFT reveal that the optical properties of NDT-based conjugated polymers can be well tuned by adopting different acceptor units, and these ploymers are potential donor materials for tandem and ternary solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA