Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nematol ; 56(1): 20240029, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39221107

RESUMEN

The hop cyst nematode, Heterodera humuli, is the most common plant-parasitic nematode associated with hop worldwide. This study reports the draft genome of H. humuli generated on the PacBio Sequel IIe System with the ultra-low DNA input HiFi sequencing method, and the corresponding genome annotation. This genome resource will help further studies on H. humuli and other cyst nematodes.

2.
Plant J ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276334

RESUMEN

Cyst nematodes establish permanent feeding structures called syncytia inside the host root vasculature, disrupting the flow of water and minerals. In response, plants form WOX11-mediated adventitious lateral roots at nematode infection sites. WOX11 adventitious lateral rooting modulates tolerance to nematode infections; however, whether this also benefits nematode parasitism remains unknown. Here, we report on bioassays using a 35S::WOX11-SRDX transcriptional repressor mutant to investigate whether WOX11 adventitious lateral rooting promotes syncytium development and thereby female growth and fecundity. Moreover, we chemically inhibited cellulose biosynthesis to verify if WOX11 directly modulates cell wall plasticity in syncytia. Finally, we performed histochemical analyses to test if WOX11 mediates syncytial cell wall plasticity via reactive oxygen species (ROS). Repression of WOX11-mediated transcription specifically enhanced the radial expansion of syncytial elements, increasing both syncytium size and female offspring. The enhanced syncytial hypertrophy observed in the 35S::WOX11-SRDX mutant could be phenocopied by chemical inhibition of cellulose biosynthesis and was associated with elevated levels of ROS at nematode infection sites. We, therefore, conclude that WOX11 restricts radial expansion of nematode-feeding structures and female growth and fecundity, likely by modulating ROS-mediated cell wall plasticity mechanisms. Remarkably, this novel role of WOX11 in plant cell size control is distinct from WOX11 adventitious lateral rooting underlying disease tolerance.

3.
J Appl Genet ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143454

RESUMEN

Understanding the intricate interplay between abiotic and biotic stresses is crucial for deciphering plant responses and developing resilient cultivars. Here, we investigate the combined effects of elevated light intensity and nematode infection on tomato seedlings. Chlorophyll fluorescence analysis revealed significant enhancements in PSII quantum yield and photochemical fluorescence quenching under high light conditions. qRT-PCR analysis of stress-related marker genes exhibited differential expression patterns in leaves and roots, indicating robust defense and antioxidant responses. Despite root protection from light, roots showed significant molecular changes, including downregulation of genes associated with oxidative stress and upregulation of genes involved in signaling pathways. Transcriptome analysis uncovered extensive gene expression alterations, with light exerting a dominant influence. Notably, light and nematode response synergistically induced more differentially expressed genes than individual stimuli. Functional categorization of differentially expressed genes upon double stimuli highlighted enrichment in metabolic pathways, biosynthesis of secondary metabolites, and amino acid metabolism, whereas the importance of specific pathogenesis-related pathways decreased. Overall, our study elucidates complex plant responses to combined stresses, emphasizing the importance of integrated approaches for developing stress-resilient crops in the face of changing environmental conditions.

4.
Plant Cell Environ ; 47(8): 2811-2820, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679939

RESUMEN

Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.


Asunto(s)
Interacciones Huésped-Parásitos , Oxidación-Reducción , Enfermedades de las Plantas , Plantas , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas/parasitología , Plantas/metabolismo , Plantas/parasitología , Nematodos/fisiología
5.
Front Plant Sci ; 15: 1343038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463573

RESUMEN

Potato production faces major challenges from inadequate soil fertility, and nematode infestation, yet synthetic fertilizers and nematicides are costly and harmful to the environment. This study explored the potential of chitin-fortified black soldier fly-composted organic fertilizer (BSFCOF) as a multipurpose organic fertilizer amendment for enhancing potato yield and suppressing potato cyst nematodes (PCN). The BSFCOF was applied at a rate equivalent to 150 kg N ha-1 and fortified with chitin from black soldier fly pupal exuviae at inclusion rates equivalent to 0.5, 1, 2, 3, 4 and 5% chitin. Data were collected on potato growth characteristics, PCN population densities, and soil chemical properties for two growing cycles. Results showed that chitin fortified BSFCOF significantly improved potato growth parameters, chlorophyll concentration, marketable tuber yield and number of marketable tubers. The marketable tuber yield achieved using chitin-fortified BSFCOF was 70 - 362%, and 69 - 238% higher than the values achieved using unfertilized soil during the first and second growing cycles, respectively. Soil amendment with chitin-fortified BSFCOF significantly reduced the number of cysts per 200 g soil-1, number of eggs and J2 per cyst-1, eggs g-1 soil and reproduction rate by 32 - 87%, 9 - 92%, 31- 98% and 31 - 98%, respectively. The PCN suppression increased with chitin inclusion rates. There were significantly higher values for soil pH, ammonium nitrogen, nitrate nitrogen, available phosphorus, calcium, magnesium, potassium, and cation exchange capacity in soil amended with BSFCOF compared to unamended soil. This study demonstrates that BSFCOF fortified with 5% chitin is an effective soil enhancer with multiple benefits, including improved soil fertility, potato performance, and effective management of potato cyst nematodes.

6.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366574

RESUMEN

Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that horizontal gene transfer-the natural acquisition of foreign genes in parasitic nematodes-contributes to parasitism. However, an apparent paradox has emerged from horizontal gene transfer analyses: On the one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors, while on the other hand, considerably more closely related organisms (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here, we used comparative genomic approaches to evaluate possible plant-derived horizontal gene transfer events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived horizontal gene transfer cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a 4-step model for horizontal gene transfer from plant to parasite in order to evaluate why the absence of plant-derived horizontal gene transfer cases is observed. We find that the plant genome is mobilized by the nematode during infection, but that uptake of the said "mobilome" is the first major barrier to horizontal gene transfer from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acid exchange in the arms race between plants and plant parasites.


Asunto(s)
Plantas , Tylenchoidea , Animales , Plantas/genética , ADN , Genómica , Tylenchoidea/genética , Enfermedades de las Plantas/parasitología
7.
Mol Plant Microbe Interact ; 37(3): 179-189, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37870371

RESUMEN

Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Asunto(s)
Quistes , Tylenchida , Tylenchoidea , Animales , Femenino , Tylenchoidea/genética , Interacciones Huésped-Parásitos/fisiología , Transducción de Señal , Productos Agrícolas , Enfermedades de las Plantas/parasitología
8.
Plant Dis ; 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37005503

RESUMEN

Heterodera zeae Koshy, Swarup & Sethi, 1971 (corn cyst nematode) is an important disease of corn in several areas of the world, including India, Nepal, Pakistan, Egypt, USA, Greece and Portugal (Subbotin et al., 2010). It is a sedentary semi-endoparasite feeding on corn roots and other Poaceae plants and has been associated with significant yield losses in corn (Subbotin et al., 2010). During autumn 2022 a plant-parasitic nematode survey performed in corn at central-western area of Spain (Talavera de la Reina, Toledo), revealed a commercial field with stunted plants. Nematodes were extracted from soil by centrifugal-flotation method (Coolen, 1979). Corn roots inspection detected infections by immature and mature cysts, and soil revealed also mature live cysts and second-stage juveniles (J2s) with a population density of 1010 eggs and J2s/500 cm3 soil (including eggs from cysts). J2s and cysts were processed to pure glycerine using De Grisse's (1969) method. DNA was isolated from single live fresh J2s specimens for amplifying and sequencing of cytochrome c oxidase subunit II (COII) mitochondrial region using the primer pair species-specific H.Gly-COIIF_inFOR/P116F-1R (Riepsamen et al., 2011); D2 and D3 expansion domains of the 28S rRNA were amplified using the D2A/D3B primers (De Ley et al. 1999); internal transcribed spacer (ITS) region using primers TW81/AB28 (Subbotin et al., 2001); and cytochrome c oxidase subunit 1 (COI) gene was amplified using the primers JB3/JB5 (Bowles et al., 1992). Brown cysts were lemon-shaped with a protruding vulval cone with fenestra ambifenestrate, bullae prominent below underbridge and characteristically arranged in finger-like bullae (Fig. 1). J2 with slightly offset lip region (3-5 annuli), stylet strong with rounded stylet knobs, lateral field with four lines, and tail short and tapering conically. Measurements of cysts (n=10) included body length 559 (432-688) µm, body width 450 (340-522) µm, fenestral length 40 (36-43) µm, semifenestral width 19 (17-21) µm, and vulval slit 40 (35-44) µm. J2 measurements (n=10) included body length 477 (420-536) µm, stylet length 21 (20-22) µm, tail length 51 (47-56) µm, and tail hyaline region 23 (20-26) µm. Morphology and morphometrics of cysts and J2, fit with original description and others from several countries (Subbotin et al., 2010). Two J2s individuals were sequenced for COII region (OQ509010-OQ509011) showing 97.1-98.1% similarity with H. zeae from USA (HM462012). Six almost identical 28S rRNA sequences from J2s (OQ449649-OQ449654) were 99.2-99.4% similar to 28S rRNA sequences of H. zeae from Greece, Afghanistan and USA (GU145612, JN583885, DQ328695). Four identical ITS DNA fragments from J2s (OQ449655-OQ449658) were 97.0-97.8% similar to ITS sequences of H. zeae from Greece, and China (GU145616, MW785771, OP692770). Finally, six COI sequences of 400 bp obtained for J2s (OQ449699-OQ449704) were under 87% similarity to several COI sequences of Heterodera spp. in NCBI, being a new molecular barcoding for identifying this species. On the basis of these results, the cyst nematodes isolated from the corn plants from the central-western area of Spain (Talavera de la Reina, Toledo) were confirmed as H. zeae and up to our knowledge it is the first report in Spain. This is a well-known pest of corn, causing important losses in this crop (Subbotin et al., 2010) and it was previously regulated as a quarantine nematode in the Mediterranean region (EPPO).

9.
Plant Dis ; 107(9): 2792-2798, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36856644

RESUMEN

Field trials were conducted to assess the benefit of combining a transgenic soybean cyst nematode (SCN) resistance trait, Cry14Ab-1 expressed by the event GMB151, with the native resistance allele rhg1b from PI 88788. The GMB151 event and rhg1b were crossed into common genetic backgrounds and segregated out to create four genetically related lines within each background. The lines created contained both native and transgenic resistance (rhg1b + GMB151), only native resistance (rhg1b alone), only transgenic resistance (GMB151 alone), or neither resistance type (susceptible). The benefit of GMB151 and rhg1b for SCN management was evaluated by measuring SCN control and yield protection. Soybean cyst nematode control was assessed by counting the number of females and cysts on roots early in the season and measuring the change in SCN egg population density over the entire season. The GMB151 transgenic event and the native resistance allele rhg1b both reduced early season SCN reproduction and contributed to significantly higher soybean yield. Compared to susceptible lines, the rhg1b allele improved yield by 33%, while GMB151 improved yield by 13%. Combining the GMB151 event and rhg1b allele resulted in greater SCN control and yield improvement than either provided alone. The combination of GMB151 and rhg1b reduced season-long SCN reproduction by 50% and resulted in 44% greater yield than the susceptible lines. Soybean cyst nematode virulence to rhg1b continues to increase due to the continuous planting of PI 88788-derived resistant cultivars. Pyramiding GMB151 with rhg1b provides a new management option to improve SCN control and soybean yield.


Asunto(s)
Quistes , Nematodos , Animales , Femenino , Glycine max/genética , Fenotipo
10.
Mol Ecol ; 32(6): 1515-1529, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35560992

RESUMEN

Potato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are essential for PCN control. However, the poor delineation of G. pallida pathotypes has hampered the efficient use of available host plant resistances. Long-read sequencing technology allowed us to generate a new reference genome of G. pallida population D383 and, as compared to the current reference, the new genome assembly is 42 times less fragmented. For comparison of diversification patterns of six effector families between G. pallida and G. rostochiensis, an additional reference genome was generated for an outgroup, the beet cyst nematode Heterodera schachtii (IRS population). Large evolutionary contrasts in effector family topologies were observed. While VAPs (venom allergen-like proteins) diversified before the split between the three cyst nematode species, the families GLAND5 and GLAND13 only expanded in PCNs after their separation from the genus Heterodera. Although DNA motifs in the promoter regions thought to be involved in the orchestration of effector expression ("DOG boxes") were present in all three cyst nematode species, their presence is not a necessity for dorsal gland-produced effectors. Notably, DOG box dosage was only loosely correlated with the expression level of individual effector variants. Comparison of the G. pallida genome with those of two other cyst nematodes underlined the fundamental differences in evolutionary history between effector families. Resequencing of PCN populations with different virulence characteristics will allow for the linking of these characteristics to the composition of the effector repertoire as well as for the mapping of PCN diversification patterns resulting from extreme anthropogenic range expansion.


Asunto(s)
Genómica , Nematodos , Animales , Análisis de Secuencia de ADN , Antioxidantes , Regiones Promotoras Genéticas
11.
J Adv Res ; 47: 27-40, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35872350

RESUMEN

INTRODUCTION: Plant parasitic cyst nematodes secrete a number of effectors into hosts to initiate formation of syncytia and infection causing huge yield losses. OBJECTIVES: The identified cyst nematode effectors are still limited, and the cyst nematode effectors-involved interaction mechanisms between cyst nematodes and plants remain largely unknown. METHODS: The t-SNARE domain-containing effector in beet cyst nematode (BCN) was identified by In situ hybridization and immunohistochemistry analyses. The mutant of effector gene was designed by protein structure modeling analysis. The functions of effector gene and its mutant were analyzed by genetic transformation in Arabidopsis and infection by BCN. The protein-protein interaction was analyzed by yeast two hybrid, BiFC and pulldown assays. Gene expression was assayed by quantitative real-time PCR. RESULTS: A t-SNARE domain-containing BCN HsSNARE1 was identified as an effector, and its mutant HsSNARE1-M1 carrying three mutations (E141D, A143T and -148S) that altered regional structure from random coils to α-helixes was designed and constructed. Transgenic analyses indicated that expression of HsSNARE1 significantly enhanced while expression of HsSNARE1-M1 and highly homologous HgSNARE1 remarkably suppressed BCN susceptibility of Arabidopsis. HsSNARE1 interacted with AtSNAP2 and AtPR1 via its t-SNARE domain and N-terminal, respectively, while HsSNARE1-M1/HgSNARE1 could not interact with AtPR1 but bound AtSNAP2. AtSNAP2, AtSHMT4 and AtPR1 interacted pairwise, but neither HsSNARE1 nor HsSNARE1-M1/HgSNARE1 could interact with AtSHMT4. Expression of HsSNARE1 significantly suppressed while expression of HsSNARE1-M1/HgSNARE1 considerably induced both AtSHMT4 and AtPR1 in transgenic Arabidopsis infected with BCN. Overexpression of AtPR1 significantly suppressed BCN susceptibility of Arabidopsis. CONCLUSIONS: This work identified a t-SNARE-domain containing cyst nematode effector HsSNARE1 and deciphered a molecular mode of action of the t-SNARE-domain containing cyst nematode effectors that HsSNARE1 promotes cyst nematode disease by interaction with both AtSNAP2 and AtPR1 and significant suppression of both AtSHMT4 and AtPR1, which is mediated by three structure change-causing amino acid residues.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Beta vulgaris , Nematodos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Beta vulgaris/parasitología , Nematodos/metabolismo , Mutación
12.
Front Plant Sci ; 13: 987059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275579

RESUMEN

Potato cyst nematodes (PCN) cause an overall 9% yield loss of total potato production worldwide. Research on sustainable management of PCN is still under progress. Two microbial fermentation products (MFPs) from Alltech, a proprietary blend formulated with a bacterial fermentation media and a Cu component (MFP5075), and a microbial based product (MFP3048), were evaluated against the PCN Globodera rostochiensis. In laboratory tests, effectiveness of the MFPs was recorded in terms of PCN juveniles (J2) hatching from cysts, J2 mortality and their attraction toward potato roots using pluronic gel. Greenhouse trials were conducted to study the effect of the products on PCN infestation in potato plants and a pilot scale experiment was conducted to study the impact of these MFPs on nematode biodiversity in garden soil. All treatments were performed within a concentration range of 0, 0.5, 1, and 2% (v/v) MFP5075 and 2, 6, 10, and 20 g/10 ml (w/v) MFP3048. The attraction assay, juvenile hatching and the PCN infestation in plants results were compared with those in an untreated control and a commercial nematicide (Nemguard™) treatment. After 24 h of treatment with 0.5 and 1% MFP5075, a 13-fold and 43-fold reduction, respectively, relative to J2 survival was recorded compared to that of untreated control. However, no J2 survived at 2% and above concentration of the MFP5075 treatment. Treatment with MFP3048 was effective in causing mortality of J2 only after 48-h. In the attraction assay, a 20-fold and 8-fold reduction in number of J2 attracted toward potato roots was observed, when treated with MFP5075, compared to the untreated and the Nemguard™ treatment, respectively. Subsequently, 30-35 PCN cysts were treated with both products dissolved in potato root diffusate and the results were recorded in terms of number of J2 hatched in each treatment after 10 days. No J2 hatched in the MFP5075 treatment, whereas mean numbers (±SE) of 243 ± 11.5, 30 ± 2.5, and 1.3 ± 0.6 J2 were noted in the untreated control, MFP3048, and the Nemguard™ treatment, respectively. The treatment with the MFPs compromised the integrity of the unhatched J2, which looked granular, whereas the internal organs of the unhatched J2 could be clearly identified in the untreated control. In plant infestation studies, treatment with MFP3048 and MFP5075 caused 90.6 and 84.9 percent reduction in PCN infestation, respectively, in terms of cysts developed on roots compared to untreated control. Overall, results indicate that the MFPs could potentially provide a promising alternative for sustainable PCN management.

13.
Pathogens ; 11(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297235

RESUMEN

Plant-parasitic nematodes (PPNs) are among the most notorious and underrated threats to food security and plant health worldwide, compromising crop yields and causing billions of dollars of losses annually. Chemical control strategies rely heavily on synthetic chemical nematicides to reduce PPN population densities, but their use is being progressively restricted due to environmental and human health concerns, so alternative control methods are urgently needed. Here, we review the potential of bacterial and fungal agents to suppress the most important PPNs, namely Aphelenchoides besseyi, Bursaphelenchus xylophilus, Ditylenchus dipsaci, Globodera spp., Heterodera spp., Meloidogyne spp., Nacobbus aberrans, Pratylenchus spp., Radopholus similis, Rotylenchulus reniformis, and Xiphinema index.

14.
Plant J ; 112(4): 1070-1083, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36181710

RESUMEN

Infections by root-feeding nematodes have profound effects on root system architecture and consequently shoot growth of host plants. Plants harbor intraspecific variation in their growth responses to belowground biotic stresses by nematodes, but the underlying mechanisms are not well understood. Here, we show that the transcription factor TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR-9 (TCP9) modulates root system architectural plasticity in Arabidopsis thaliana in response to infections by the endoparasitic cyst nematode Heterodera schachtii. Young seedlings of tcp9 knock-out mutants display a significantly weaker primary root growth inhibition response to cyst nematodes than wild-type Arabidopsis. In older plants, tcp9 reduces the impact of nematode infections on the emergence and growth of secondary roots. Importantly, the altered growth responses by tcp9 are most likely not caused by less biotic stress on the root system, because TCP9 does not affect the number of infections, nematode development, and size of the nematode-induced feeding structures. RNA-sequencing of nematode-infected roots of the tcp9 mutants revealed differential regulation of enzymes involved in reactive oxygen species (ROS) homeostasis and responses to oxidative stress. We also found that root and shoot growth of tcp9 mutants is less sensitive to exogenous hydrogen peroxide and that ROS accumulation in nematode infection sites in these mutants is reduced. Altogether, these observations demonstrate that TCP9 modulates the root system architectural plasticity to nematode infections via ROS-mediated processes. Our study further points at a novel regulatory mechanism contributing to the tolerance of plants to root-feeding nematodes by mitigating the impact of belowground biotic stresses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quistes , Infecciones por Nematodos , Tylenchoidea , Animales , Arabidopsis/fisiología , Especies Reactivas de Oxígeno , Factores de Transcripción/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Proteínas de Arabidopsis/genética
15.
Evol Appl ; 15(8): 1236-1248, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36051465

RESUMEN

Reconstructing the dispersal routes of pathogens can help identify the key drivers of their evolution and provides a basis for disease control. The cereal cyst nematode Heterodera avenae is one of the major nematode pests on cereals that can cause 10%-90% crop yield losses worldwide. Through extensive sampling on wheat and grasses, the Chinese population of H. avenae is widely identified in virtually all wheat growing regions in China, with H1 being the predominant haplotype. The monoculture of wheat in north China might have been the key driver for the prevalence of H1 population, which should date no earlier than the Han Dynasty (202 BCE-220 CE). Molecular phylogenetic and biogeographic analyses of Chinese H. avenae suggest a Pleistocene northwest China origin and an ancestral host of grasses. We assume that the prosperity of Heterodera in this region is a result of their preference for cooler climate and various grass hosts, which only appeared after the uplift of Qinghai-Tibetan Plateau and aridification of Inner Asia. Nematode samples from the current and historical floodplains show a significant role of the Yellow River in the distribution of Chinese H. avenae. Whereas mechanical harvesters that operate on an inter-provincial basis suggest the importance in the transmission of this species in eastern China in recent times. This study highlights the role of environmental change, river dynamics, and anthropogenic factors in the origin and long-distance dissemination of pathogens.

16.
J Nematol ; 542022.
Artículo en Inglés | MEDLINE | ID: mdl-35386746

RESUMEN

The many decades during which the cultivation of Cannabis sativa (hemp) was strongly restricted by law resulted in little research on potential pathogenic nematodes of this increasingly important crop. The primary literature was searched for hemp-nematode papers, resulting in citations from 1890 through 2021. Reports were grouped into two categories: (i) nematodes as phytoparasites of hemp, and (ii) hemp and hemp products and extracts for managing nematode pests. Those genera with the most citations as phytoparasites were Meloidogyne (root-knot nematodes, 20 papers), Pratylenchus (lesion nematodes, 7) and Ditylenchus (stem nematodes, 7). Several Meloidogyne spp. were shown to reproduce on hemp and some field damage has been reported. Experiments with Heterodera humuli (hop cyst nematode) were contradictory. Twenty-three papers have been published on the effects of hemp and hemp products on plant-parasitic, animal-parasitic and microbivorous species. The effects of hemp tissue soil incorporation were studied in five papers; laboratory or glasshouse experiments with aqueous or ethanol extracts of hemp leaves accounted for most of the remainder. Many of these treatments had promising results but no evidence was found of large-scale implementation. The primary literature was also searched for chemistry of C. sativa roots. The most abundant chemicals were classified as phytosterols and triterpenoids. Cannabinoid concentration was frequently reported due to the interest in medicinal C. sativa. Literature on the impact of root-associated chemicals on plant parasitic nematodes was also searched; in cases where there were no reports, impacts on free-living or animal parasitic nematodes were discussed.

17.
Life (Basel) ; 13(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36676006

RESUMEN

The dissemination of soil tares in the potato and sugar beet processing industry is one of the main paths for the spread of potato cyst nematodes (PCN), a severe quarantine pest. Efficient measures for the disinfestation of tare soil from PCN, but also from beet cyst nematodes (BCN), are needed. In our study, Globodera pallida (a PCN) and Heterodera schachtii (a BCN) cysts were sealed in gauze bags and imbedded in sedimentation basins. The cysts were either placed (a) in a presedimentation basin (Brukner basin) for three days, (b) in the presedimentation basin for three days and subsequently in sedimentation basins for nine weeks or (c) in sedimentation basins for nine weeks (without presedimentation). We tested the viability of the eggs and juveniles by hatching assays and using the reproduction rates in bioassays. We demonstrated that PCN and BCN imbedded in a sedimentation basin were only still showing some hatching activity after 2.5 weeks, while no hatching was observed when an additional Brukner basin treatment was conducted before sedimentation.

18.
Vavilovskii Zhurnal Genet Selektsii ; 25(3): 337-343, 2021 May.
Artículo en Ruso | MEDLINE | ID: mdl-34901730

RESUMEN

. Nematodes belong to economically important pests. Here we reviewed the recent data on molecular mechanisms of plant resistance to cyst and gall nematodes including the most devastating Globodera rostochiensis, G. pallida, Heterodera schachtii, Meloidogyne chitwoodi, and M. incognita. The Golden Potato Cyst Nematode (G. rostochiensis, GPCN) may be taken as an example of an economically important pest: in Russia, it occurs in 61 regions with a total area of 1.8 million ha and may cause the yield loss from 19 to 90 %. The biological characteristics of sedentary nematodes makes their agrotechnical control problematic, i.e. the GPCN cysts remain dormant in soil for many years until a susceptible host appears, whereas nematicides are either toxic or inefficient. Introgression of resistance genes (R-genes) from related cultivated or wild species is likely to be the most appropriate way for their biocontrol. The life cycle of sedentary nematodes is based on juveniles' penetration into the host root where they reprogram plant cells into a syncytium or the so-called 'giant cells' and inhibit the plant defense response. Molecular mechanisms of plant-nematode interaction are unusual and this phenomenon provides a very interesting model for the investigation of plant morphogenesis control as well as for the development of new genetic instruments of biocontrol. Here we reviewed recent publications on plant parasitic nematode effectors used for hijacking of the plant immune system, data on R-genes and molecular mechanisms of their activities. In addition, host-induced gene silencing (HIGS) is discussed as a perspective mechanism for nematode biocontrol. HIGS is based on the RNA interference in the cells of the host plant addressed against the nematode genes important for their development and productivity. Several recent investigations demonstrated efficiency of HIGS against sedentary nematodes.

19.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638828

RESUMEN

The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of H. schachtii and H. trifolii in the egg, juvenile 2 (J2), and female stages. In all, 392 peaks were analyzed by capillary electrophoresis time-of-flight mass spectrometry, which revealed a lot of similarities among metabolomes. Aromatic amino acid metabolism, carbohydrate metabolism, choline metabolism, methionine salvage pathway, glutamate metabolism, urea cycle, glycolysis, gluconeogenesis, coenzyme metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid (TCA) cycle for energy conversion (ß-oxidation and branched-chain amino acid metabolism) energy storage were involved in all stages studied. The egg and female stages synthesized higher levels of metabolites compared to the J2 stage. The key metabolites detected were glycerol, guanosine, hydroxyproline, citric acid, phosphorylcholine, and the essential amino acids Phe, Leu, Ser, and Val. Metabolites, such as hydroxyproline, acetylcholine, serotonin, glutathione, and glutathione disulfide, which are associated with growth and reproduction, mobility, and neurotransmission, predominated in the J2 stage. Other metabolites, such as SAM, 3PSer, 3-ureidopropionic acid, CTP, UDP, UTP, 3-hydroxy-3-methylglutaric acid, 2-amino-2-(hydroxymethyl-1,3-propanediol, 2-hydroxy-4-methylvaleric acid, Gly Asp, glucuronic acid-3 + galacturonic acid-3 Ser-Glu, citrulline, and γ-Glu-Asn, were highly detected in the egg stage. Meanwhile, nicotinamide, 3-PG, F6P, Cys, ADP-Ribose, Ru5P, S7P, IMP, DAP, diethanolamine, p-Hydroxybenzoic acid, and γ-Glu-Arg_divalent were unique to the J2 stage. Formiminoglutamic acid, nicotinaminde riboside + XC0089, putrescine, thiamine 2,3-dihydroxybenzoic acid, 3-methyladenine, caffeic acid, ferulic acid, m-hydrobenzoic acid, o- and p-coumaric acid, and shikimic acid were specific to the female stage. Overall, highly similar identities and quantities of metabolites between the corresponding stages of the two species of nematode were observed. Our results will be a valuable resource for further studies of physiological changes related to the development of nematodes and nematode-plant interactions.


Asunto(s)
Beta vulgaris/parasitología , Medicago/microbiología , Metabolómica , Rabdítidos/crecimiento & desarrollo , Rabdítidos/metabolismo , Animales , Electroforesis Capilar , Espectrometría de Masas
20.
3 Biotech ; 11(6): 294, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34136331

RESUMEN

Cyst nematodes of the species Globodera rostochiensis and G. pallida are devastating parasites of the potato crop. Early detection of cyst nematodes in the field is critical for adopting an appropriate management strategy. A specific and sensitive loop-mediated isothermal amplification (LAMP) assay using four oligonucleotide primers has been developed to amplify the internal transcribed spacer region (ITS) of ribosomal DNA of potato cyst nematode G. rostochiensis. The PCN-LAMP reaction could be completed within 75 min at 68 °C followed by termination at 85 °C for 7 min. The primers exhibited specificity for G. rostochiensis and did not detect any other tested genera of plant parasitic or entomopathogenic nematodes. LAMP reaction was highly sensitive, suitable for crude genomic DNA and could successfully detect G. rostochiensis DNA up to femtogram quantity. This assay is rapid, cost effective and requires minimal instrumentation. It will facilitate the detection of G. rostochiensis at field and point-of-care labs and help in the interception of infested plant material/soil samples at quarantine stations independent of a professional nematologist. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02830-8.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA