Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
Environ Sci Pollut Res Int ; 31(39): 51658-51672, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39117974

RESUMEN

The present investigation was undertaken to evaluate the toxic effects of CoCl2-induced hepatotoxicity and fatty acid changes in juvenile Cyprinus carpio. Fish were divided into six experimental groups in duplicate. The first group served as controls. The second group received the lowest exposure dose at 2.5 µg/L. In the third group, fish were exposed to 25 µg/L of CoCl2. The fourth group was exposed to 50 µg/L of CoCl2. The last two groups were exposed to the highest doses, 100 and 500 µg/L of CoCl2. Total antioxidant activities were estimated using a colorimetric method. Liver fatty acid compositions were analyzed by high-performance gas chromatography (GC). Hepatopathy was identified through microscopic analysis. Exposure of C. carpio to CoCl2 resulted in hepatotoxicity, indicated by increased levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), protein carbonyls (PCO), and alterations in the ferric reducing antioxidant power system (FRAP). Superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), metallothioneins (MTs), and low thiol levels (L-SH) significantly increased, particularly under exposure to the highest CoCl2 doses (100 and 500 µg/L). Acetylcholinesterase activity decreased significantly in C. carpio exposed to graded CoCl2 doses. Additionally, there was a decrease in polyunsaturated fatty acids (PUFA), primarily n-3 PUFA, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), while an increase in monounsaturated (MUFA) and saturated fatty acids (SFA), including palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), and oleic (C18:1) acids, was observed. Histopathological examination of the liver confirmed hepatopathy revealing characteristic tissue changes such as leucocyte infiltration, hepatic cell membrane degradation, vacuolization, and lipid inclusions. The study provided ethnophysiology insights into the responses of C. carpio to CoCl2-induced oxidative stress and lipidomic alteration, underscoring its potential as a bioindicator for assessing environmental impacts and metal contamination.


Asunto(s)
Carpas , Cobalto , Hígado , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Cobalto/toxicidad , Hígado/efectos de los fármacos , Lipidómica , Contaminantes Químicos del Agua/toxicidad , Malondialdehído/metabolismo
2.
Anat Histol Embryol ; 53(4): e13086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965883

RESUMEN

Medical imaging techniques such as digital radiography and ultrasonography are non-invasive and provide precise results for examining internal organs and structures within fish. Their effectiveness can be further enhanced by using body parts like scales as markers for the organs beneath them. This study utilized the number of scales as landmarks in digital radiography and ultrasonography to non-invasively evaluate the muscles, bones, and images of internal and reproductive organs of common carp (Cyprinus carpio). Digital radiography was performed in the dorsoventral and lateral views of the fish, whereas ultrasonography was conducted in longitudinal and transverse views on sequence scale numbers with brightness and colour Doppler-modes. Digital radiography of the common carp revealed the whole-body morphology, including the bony parts from the head, pectoral fins, dorsal fins, pelvic fins, anal fins, and vertebrae to the tail that appeared radiopaque. Internal organs were also observed, with the swim bladder and heart appeared radiolucent, while the intestines, liver, testes, and ovaries appeared radiopaque. Ultrasonography in brightness mode displayed the digestive organs, reproductive organs, and muscle thickness. Additionally, colour Doppler mode demonstrated blood flow within the heart's ventricle.


Asunto(s)
Carpas , Animales , Carpas/anatomía & histología , Femenino , Masculino , Ultrasonografía/veterinaria , Ultrasonografía/métodos , Intensificación de Imagen Radiográfica/métodos , Escamas de Animales/anatomía & histología , Escamas de Animales/diagnóstico por imagen , Ultrasonografía Doppler en Color/veterinaria , Ultrasonografía Doppler en Color/métodos , Puntos Anatómicos de Referencia/diagnóstico por imagen , Puntos Anatómicos de Referencia/anatomía & histología , Hígado/diagnóstico por imagen , Hígado/anatomía & histología , Huesos/diagnóstico por imagen , Huesos/anatomía & histología
3.
Front Immunol ; 15: 1407237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947329

RESUMEN

Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.


Asunto(s)
Aeromonas hydrophila , Carpas , Citocinas , Eritrocitos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Carpas/inmunología , Carpas/microbiología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Aeromonas hydrophila/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Fagocitosis/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Inmunidad Innata
4.
Fish Shellfish Immunol ; 151: 109744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960107

RESUMEN

MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.


Asunto(s)
Carpas , Proteínas de Peces , Gosipol , MicroARNs , Factor 88 de Diferenciación Mieloide , Transducción de Señal , Animales , Carpas/inmunología , Carpas/genética , MicroARNs/genética , MicroARNs/metabolismo , Gosipol/farmacología , Gosipol/administración & dosificación , Transducción de Señal/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-38996693

RESUMEN

Preliminary experiments in our laboratory have demonstrated that common carp (Cyprinus carpio) cultivated for two months in land-based container recirculating aquaculture systems (C-RAS) exhibit superior muscle quality compared to those raised in traditional pond systems (TP). To elucidate the molecular mechanisms underlying muscle quality variations in common carp cultured under two aquaculture systems, transcriptomic and metabolomic analyses were performed on muscle tissues of specimens aged 11 to 23 months. Comparison of muscle histological sections between the two groups indicated a significantly lower long diameter of muscle fibers in the C-RAS group compared to the TP group (P < 0.01). Conversely, the muscle fiber density was significantly higher in the C-RAS group than in the TP group (P < 0.05). Transcriptomic and metabolomic analyses identified 3390 differentially expressed genes (DEGs)-1558 upregulated and 1832 downregulated-and 181 differentially expressed metabolites (DEMs)-124 upregulated and 57 downregulated-between the groups. Based on integrated transcriptomic and metabolomic analyses, the significant differences focus on metabolic pathways involving glycolysis/gluconeogenesis, arginine and proline metabolism, arginine biosynthesis, and purine metabolism. The study revealed that the muscle quality of common carp in two aquaculture systems is primarily regulated through improvements in energy metabolism, amino acid metabolism, fatty acid metabolism, and purine metabolism. These metabolic processes play significant roles in promoting muscle fiber hyperplasia and hypertrophy, enhancing muscle flavor, and increasing muscle antioxidant capacity. This study provides new insights into the molecular and metabolic pathways that control muscle quality in common carp under different environmental factors.

6.
Animals (Basel) ; 14(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38998051

RESUMEN

The common carp (Cyprinus carpio) is one of the most important aquaculture species in China, known for its remarkable adaptability and nutritional profile. However, the specific molecular response mechanisms regulating the nutritional deposition of carp remain inadequately elucidated. This study conducted a comprehensive analysis of muscle nutritional content and transcriptome data from liver and muscle tissues of three distinct carp varieties. The aim was to elucidate the key genes and signaling pathways that regulate muscle nutritional composition in carp. The findings revealed that FFRC carp (FFRC) exhibited significantly higher levels of crude fat, total n-3 polyunsaturated fatty acids, and total n-6 polyunsaturated fatty acids in muscle tissue compared to Ying carp (YC) and Huanghe carp (HC) (p < 0.05). Transcriptomic analyses correlated these elevated levels with a marked upregulation of genes involved in the activation and transportation of fatty acid (fabp7, acsl5, acsbg2) as well as biosynthesis and elongation of long-chain unsaturated fatty acids (elovl2, fads2) within the liver. Furthermore, the flavor amino acid, essential amino acids, and crude protein content in the muscle of HC were significantly higher than in FFRC and YC (p < 0.05). Transcriptomic analyses indicated that this was associated with significant changes in the expression of genes related to amino acid metabolism (asns, alt, ldha, glul, setd, prodh, l3hypdh, hoga1) within their muscle tissue. This research provides a theoretical foundation for the precise modulation of the muscle nutritional composition in carp.

7.
Antioxidants (Basel) ; 13(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39061917

RESUMEN

Cyprinus carpio is a significant freshwater species with substantial nutritional and economic value. Rice-carp co-culture represents one of its principal cultivation methods. However, in the system, the optimal farming density for carp and the impact of high stocking density on their muscle nutritional composition have yet to be explored. Thus, the objective of the current study was to investigate the influences of stocking density on the muscle nutrient profiles and metabolism of C. carpio in rice-fish co-culture systems. Common carp were cultured at three stocking densities, low density (LD), medium density (MD), and high density (HD), over a period of 60 days. Following this, comprehensive analyses incorporating physiological, biochemical, and multi-omics sequencing were conducted on the muscle tissue of C. carpio. The results demonstrated that HD treatment led to a reduction in the antioxidant capacity of C. carpio, while resulting in elevated levels of various fatty acids in muscle tissue, including saturated fatty acids (SFAs), omega-3 polyunsaturated fatty acids (n-3 PUFAs), and omega-6 polyunsaturated fatty acids (n-6 PUFAs). The metabolome analysis showed that HD treatment caused a marked reduction in 43 metabolites and a significant elevation in 30 metabolites, primarily linked to lipid and amino acid metabolism. Additionally, transcriptomic analysis revealed that the abnormalities in lipid metabolism induced by high-stocking-density treatment may be associated with significant alterations in the PPAR signaling pathway and adipokine signaling pathway. Overall, our findings indicate that in rice-fish co-culture systems, high stocking density disrupted the balance of antioxidant status and lipid metabolism in the muscles of C. carpio.

8.
Am J Vet Res ; : 1-8, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079558

RESUMEN

OBJECTIVE: To establish an echocardiographic technique in koi carp (Cyprinus carpio), compare cardiopulmonary parameters under manual restraint versus anesthesia, and provide a gross anatomical and histologic cardiac description. METHODS: A randomized, crossover echocardiography study was performed in 40 clinically healthy adult, unknown sex, privately owned koi carp on May 10 and 11 through June 26 and 27, 2021. Echocardiography was examined for each koi under manual restraint and isoeugenol at 50 ppm, with 3 measurements per examination performed by a radiologist and cardiologist. Two koi were euthanized for gross anatomic and histologic cardiac evaluation. RESULTS: Mean ejection fraction (EF), stroke volume (SV), and cardiac output (CO) were significantly lower, mean heart rate (HR) was significantly higher, and opercular rate (OPR) was decreased significantly in anesthetized compared to manually restrained koi. Poor reproducibility for EF and SV was observed. CONCLUSIONS: Echocardiography was feasible in both manually restrained and anesthetized koi; however, this technique may best be applied to monitoring trends over time in individual fish due to low reproducibility. Significant differences in multiple cardiopulmonary parameters, including HR, EF, SV, CO, and OPR, were present between manually restrained and anesthetized koi. A gross anatomic and histologic cardiac description is provided for this species to pair with the echocardiographic images. CLINICAL RELEVANCE: This study provides the first description of echocardiography, cardiac gross anatomy, and histology in koi. The results support echocardiography as a safe and practical noninvasive diagnostic for cardiac assessment in koi under both manual restraint and anesthesia.

9.
Environ Res ; 258: 119282, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823611

RESUMEN

The Villa Victoria dam is one of the most important storage reservoirs in Mexico since it distributes water to more than 20 million inhabitants in the Metropolitan Zone of Mexico City. In this dam, the common carp (Cyprinus carpio) is an important food resource for the inhabitants, so the aim of this work was to evaluate the oxidative damage (lipoperoxidation, oxidized proteins, antioxidant enzymes activity and gene expression), AChE, embryotoxicity and behavioral changes in C. carpio embryos and larvae exposed to water from Villa Victoria dam for 24, 48, 72 and 96 h. The embryotoxicity was evaluated trough the General Morphology Score (GMS) and the teratogenic index. Behavioral changes in basal locomotor activity and thigmotaxis were evaluated in a DanioVision, Noldus ™. An increase in lipid and protein oxidation as well as modification of CAT, SOD and GPx enzymatic activity was observed during the exposure times. The GMS indicated a low development in the embryos, the teratogenic index was less than 1, however teratogenic effects as yolk edema, fin malformation, head malformation and scoliosis were observed. In parallel, an increase in AChE activity and gene expression was observed reflecting changes in distance traveled of the basal locomotor activity and thigmotaxis at the sampling points. In conclusion, pollutants in water from Villa Victoria dam caused oxidative damage, changes in SOD, CAT, GPx and AChE activity as well as embryotoxicity and modifications in the behavior of C. carpio larvae. This study demonstrates the need to implement restoration programs for this reservoir since, contamination in the Villa Victoria dam could eventually endanger aquatic life and human health.


Asunto(s)
Acetilcolinesterasa , Carpas , Embrión no Mamífero , Larva , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , México , Acetilcolinesterasa/metabolismo , Carpas/embriología , Carpas/metabolismo , Larva/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Conducta Animal/efectos de los fármacos
10.
Environ Sci Pollut Res Int ; 31(27): 39782-39793, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833047

RESUMEN

The purpose of this study is to assess the seasonal variation of heavy metal concentration in water and fish tissues of common carp (Cyprinus carpio L.) from the Umiam Lake reservoir located in the Ri bhoi district of Meghalaya, India, and to elucidate the possible human health risk of ingesting fish captured from the contaminated lake. Results show significant (p < 0.05) seasonal differences of heavy metal concentrations in the water and different tissues of fish Cyprinus carpio L.. The total concentration of heavy metals in the water exceeds the WHO and BIS standards and thus poses a significant threat to the aquatic flora and fauna of the reservoir. The heavy metal concentrations in fish tissues were tissue-dependent, where the average concentration of heavy metals in all the tissues of Cyprinus carpio L. was in the order of Cr > Pb > Cu > Cd. In addition, the health risk assessment suggests that the heavy metals in the fish muscle from the Umiam Lake reservoir might have adverse effects on human. Therefore, the overall results of the study provide an understanding on the seasonal distribution of heavy metals in water, provide insight on their bioaccumulation in the fish tissues, and highlights the potential health risk for the local population of long-term fish consumption from Umiam Lake reservoir.


Asunto(s)
Carpas , Monitoreo del Ambiente , Lagos , Metales Pesados , Estaciones del Año , Contaminantes Químicos del Agua , Metales Pesados/análisis , Animales , India , Lagos/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos
11.
Genes (Basel) ; 15(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38927661

RESUMEN

Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.


Asunto(s)
Acuicultura , Edición Génica , Fenotipo , Animales , Edición Génica/métodos , Acuicultura/métodos , Cyprinidae/genética
12.
Antioxidants (Basel) ; 13(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38790645

RESUMEN

To investigate the ameliorative effects and mechanism of Lycium barbarum polysaccharide (LBP) on growth performance, oxidative stress, and lipid deposition in common carp (Cyprinus carpio) fed with high-fat diets, fish with an initial weight of 5.29 ± 0.12 g were divided into five experimental groups-including normal-fat diets, high-fat diets, and high-fat diets-supplemented with LBP (0.5, 1.0, and 2.0 g/kg) for 8 weeks. The results showed that high-fat diets resulted in significant decreases in final body weight, weight gain rate, and specific growth rate of fish, as well as causing a significant decrease in hepatic total antioxidant capacity, catalase, and glutathione peroxidase activities. These changes were accompanied by a significant decrease in lipase activity and ATP level and a significant increase in malondialdehyde content. The expression levels of lipid metabolism-related genes (acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase) were also markedly elevated by high-fat diets. Supplementation with 0.5-2.0 g/kg LBP in high-fat diets improved the reduced growth performance, increased hepatic total antioxidant enzymes, catalase, and glutathione peroxidase activities, and lowered malondialdehyde level in fish fed with high-fat diets. Additionally, dietary supplementation with LBP significantly downregulated hepatic gene expression levels of acetyl coenzyme A carboxylase 1, stearoyl coenzyme A desaturase 1, fat synthase, sterol regulatory element-binding protein 1, peroxisome proliferator-activated receptor-γ, fructofuranose bisphosphatase, and glucose-6-phosphatase. In conclusion, fish fed with high-fat diets demonstrated impaired growth performance, antioxidant capacity, and lipid metabolism, and dietary supplementation with 0.5-2.0 g/kg LBP ameliorated the impairments induced by high-fat diets.

13.
Aquat Toxicol ; 272: 106961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781688

RESUMEN

In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of Fe3O4 nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to Fe3O4 nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that Fe3O4 nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. Fe3O4 nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.


Asunto(s)
Carpas , Hígado , Contaminantes Químicos del Agua , Animales , Carpas/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/ultraestructura , Contaminantes Químicos del Agua/toxicidad , Microscopía Electrónica de Transmisión , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad
14.
Int J Biol Macromol ; 269(Pt 2): 132104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719016

RESUMEN

Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.


Asunto(s)
Carpas , Proteínas de Peces , Inmunidad Innata , Proteínas de la Membrana , Rhabdoviridae , Animales , Carpas/inmunología , Carpas/genética , Carpas/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Rhabdoviridae/fisiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/inmunología , Transducción de Señal
15.
Vet Parasitol Reg Stud Reports ; 51: 101034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772644

RESUMEN

Koi carp are globally known for their colors and cultural significance. The introduction of these fish to new environments poses a threat to local biodiversity, in addition to releasing parasites, such as argulid ectoparasites. This study presents a record of Argulus japonicus infecting carp in an artificial lake in Southern Brazil using morphological and molecular methods, with a 100% prevalence (n = 3) and a mean intensity of 21.6 parasites per host, distributed over the body surface. The invasion history of hosts in the study locality indicates that the introduction of A. japonicus occurred decades before its first formal record in Brazil.


Asunto(s)
Arguloida , Carpas , Enfermedades de los Peces , Animales , Carpas/parasitología , Enfermedades de los Peces/parasitología , Brasil/epidemiología , Prevalencia , Lagos/parasitología , Infestaciones Ectoparasitarias/veterinaria , Infestaciones Ectoparasitarias/parasitología , Infestaciones por Piojos/veterinaria , Infestaciones por Piojos/parasitología
16.
Animals (Basel) ; 14(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731315

RESUMEN

The aim of the study was to compare the content of major components, selected elements and heavy metals in the fillet, spine and bones of a carp (Cyprinus carpio). Moreover, the extent to which a prepared portion of carp tissue (100 g of fillet and 10 g of carp spine or bones) met the requirements for analyzed elements in adults (women and men) and children was calculated. The proximate composition (total protein, total lipid, ash, moisture) and mineral content of the fish samples were determined. The nutrient composition presented fluctuations among the different tissues. Moisture was the main constituent in the fillet and in the spine with 77.8% and 56.0%, respectively, whereas in bones, the main ingredient was ash (36.2%). All carp tissues were good sources of protein, with 16.5%, 21.0% and 17.0% in spine, bones and fillet, respectively. The most abundant main elements were the potassium in the fillet (4005 mg kg-1) and calcium in the bones (116,463 mg kg-1). The most abundant trace elements were iron in fillet and zinc in bones and spine. Carp meat can be considered a safe foodstuff in terms of concentrations of Hg, Pb and Cd, as the levels of these contaminants were less than FAO and European Commission maximum guidelines.

17.
Microsc Res Tech ; 87(10): 2292-2300, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38747100

RESUMEN

The bio-reductive fabrication of nanomaterials is a developing arena of study that seeks to fabricate nanoparticles (NPs) using microorganisms, plants, and animal blood. However, the chemical approach of AgNPs fulfills the need of abundant need of NPs. In contrast, chemically fabricated AgNPs are more toxic than biological AgNPs. Therefore, the current study aimed to assess and evaluate the chemically fabricated silver nanoparticles (AgNPs) for their possible toxicity in Common carp fish (Cyprinus carpio). The chemically synthesized silver nanoparticles were purchased from the market and applied for their possible toxicity. The chemically fabricated AgNPs were used against the Cyprinus carpio for bioaccumulation in different organs and histological alterations in the intestine and muscles. The results revealed that the AgNPs were mostly accumulated in the intestines followed by the gills, liver, and muscles (p < .05). The accumulated AgNPs caused histological alterations in gills and intestines at the highest concentration (0.08 mg/L). However, no alterations were observed by the middle and lowest concentration of AgNPs, particularly, in the intestine. In conclusion, more extensive research is required to establish the hazards related to the use of nanoparticles to disclose their negative effects on fish and the aquatic environment. REASEARCH HIGHLIGHTS: The chemical method fabricates a large amount of AgNPs Additionally, considered more toxic than the bio-reductive method AgNPs have excellent and diverse applications AgNPs deposited in various organs and cause histological changes.


Asunto(s)
Carpas , Branquias , Hígado , Nanopartículas del Metal , Plata , Animales , Plata/toxicidad , Plata/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Branquias/efectos de los fármacos , Hígado/efectos de los fármacos , Intestinos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Músculos/efectos de los fármacos , Bioacumulación
18.
Heliyon ; 10(7): e28419, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590886

RESUMEN

The study examined the potential of Silymarin, a blend of bioactive flavonolignans extracted from the milk thistle Silybum marianum, to mitigate Deltamethrin-induced toxicity in the blood of Cyprinus carpio. Fish were exposed to Deltamethrin (0.66 µg/L), the plant extract, or a combination of both for a duration of thirty days. Various parameters, including serum biochemical markers, erythrocytic abnormalities, and genotoxicity endpoints, were assessed. Results indicated a significant (p < 0.05) increase in the levels of AST, ALT, ALP, blood urea nitrogen, creatinine, glucose, cholesterol, and TLC in the fish exposed to the pesticide. Conversely, total protein, TEC, and Hb showed a notable decrease. There was also a notable rise in micronuclei and erythrocytic abnormalities such as acanthocytes, microcytes, and notched cells. Under ultrastructural examination, phenotypic deformities like spherocytosis, discocytes, and clumped erythrocytes were observed. However, dietary supplementation of silymarin (1 g/kg) significantly restored the biochemical, genetic, and cellular parameters, resembling those of the control group. This suggests the potential of this plant extract in protecting the common carp, Cyprinus carpio, from Deltamethrin-induced damage by scavenging free radicals and reducing DNA oxidative stress.

19.
Environ Res ; 252(Pt 3): 118967, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642643

RESUMEN

Sulfadimidine (SM2) is an N-substituted derivative of p-aminobenzenesulfonyl structure. This study aimed to analyze the metabolism of SM2 in carp (Cyprinus carpio). The carps were fed with SM2 at a dose of 200 mg/(kg · bw) and then killed. The blood, muscle, liver, kidney, gill, other guts, and carp aquaculture water samples were collected. The UHPLC-Q-Exactive Plus Orbitrap-MS was adopted for determining the metabolites of SM2 in the aforementioned samples. Twelve metabolites, which were divided into metabolites in vivo and metabolites in vitro, were identified using Compound Discoverer software. The metabolic pathways in vivo of SM2 in carp included acetylation, hydroxylation, glucoside conjugation, glycine conjugation, carboxylation, glucuronide conjugation, reduction, and methylation. The metabolic pathways in vitro included oxidation and acetylation. This study clarified the metabolites and metabolic pathways of SM2 in carp and provided a reference for further pharmacodynamic evaluation and use in aquaculture.


Asunto(s)
Carpas , Carpas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Redes y Vías Metabólicas , Sulfonamidas/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Espectrometría de Masas/métodos
20.
Antioxidants (Basel) ; 13(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38671885

RESUMEN

The application of cottonseed protein concentrate (CPC) is an effective strategy to moderate the shortage of fish meal (FM) for the aquafeed industry. However, little attention has been paid to the effects of replacing fishmeal with CPC on cyprinid fish. This study used common carp (Cyprinus carpio) as the biological model and assessed the potential of applying CPC as a substitute for fishmeal in the diet of common carp. The proportion of fish meal substituted with CPC in the six diets was 0% (CPC0), 25% (CPC25), 50% (CPC50), 75% (CPC75), and 100% (CPC100). Each diet was fed to three replicate groups of common carp (4.17 ± 0.02 g) for 56 days. Results revealed that the CPC50 group significantly increased the growth indexes via up-regulating the genes of the GH/IGF axis and the TOR pathway. The intestinal digestive ability was also elevated in the CPC50 group via markedly increasing intestinal villus height, protease and lipase activities in the whole intestine, and the amylase activity of the foregut and midgut. The CPC50 group captured significantly higher activities and gene expressions of antioxidant enzymes and lower malonaldehyde contents via evoking the Nrf2/Keap1 signal pathway. The CPC50 group enhance the intestinal mechanical barrier via up-regulating the gene expressions of tight junction proteins and heighten the intestinal biological barrier by increasing the probiotics (Lactococcus) and decreasing the harmful bacteria (Enterococcus). But excessive substitution levels (75% and 100%) would compromise growth performance, intestinal antioxidant capacity, and immune function. The optimum substitution level was estimated to be 46.47%, 47.72%, and 46.43% using broken-line regression analyses based on mass gain rate, protein efficiency ratio, and feed conversion rate. Overall, the fishmeal in common carp feed could be substituted up to 50% by CPC without negative influence on growth, feed utilization, and or intestinal health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA