Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(36): 49372-49392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39069589

RESUMEN

The optical characteristics of colored dissolved organic matter (CDOM) serve as a convenient tool for evaluating coastal processes, e.g., river runoff, anthropogenic inputs, primary production, and bacterial/photochemical processes. We conducted a study on the seasonal and spatial variability of absorbance and fluorescence characteristics of CDOM and nutrients in the coastal waters near the Gauthami estuary of River Godavari, the largest peninsular river of India, for a year. The surface aCDOM(350) showed a significant inverse relation with salinity in the coastal region, indicating a conservative mixing of marine and terrestrial end members. The aCDOM(350) was not conservative in the offshore (100 m isobath) waters due to enrichment by secondary sources. Seasonal variability in optical properties indicated diverse sources for CDOM, as revealed by principal component analysis. The excitation-emission matrix (EEM) spectra followed by parallel factor analysis (EEM-PARAFAC) revealed four distinct fluorophores. The tyrosine (B) fluorophore showed a predominant increase in the post-monsoon season (October to January), while tryptophan (T) was relatively more enriched, coincident with nutrient enrichment and transparency increase during the early monsoon phase (July). The biological index (BIX), which reflects recent photosynthetic activity, also displayed relatively higher values during the early monsoon. The humic fluorophores A and M, and humification index (HIX) were relatively enriched during the later phase of monsoon (July-October). HIX was > 4 in a few samples of the offshore region (100-m isobath) and indicated a probable contamination from drill-mud (bentonite) used in hydrocarbon exploration. During the monsoon, the relationship between T and B with CDOM was not evident due to the masking of B fluorescence in intact protein. However, during the post-monsoon (POM) and pre-monsoon (PRM) periods, this masking effect was not observed, likely due to protein degradation via bacterial and photochemical processes, respectively. Temporal variability in nutrients indicated that high ammonium levels were produced during POM (OM bacterial degradation), and high nitrite levels were observed during PRM (due to primary production). This study provides foundational insights into the use of CDOM for understanding the impact of diverse environmental, river discharge, and anthropogenic factors on coastal ecosystems.


Asunto(s)
Monitoreo del Ambiente , Ríos , Estaciones del Año , Ríos/química , India , Bahías , Salinidad , Contaminantes Químicos del Agua/análisis
2.
Mar Pollut Bull ; 194(Pt B): 115414, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37634316

RESUMEN

We study physical mechanisms of the Tumen River water transport in the area of the Posyet Bay (Peter the Great Bay, Sea of Japan). This study is based on the satellite and in situ measurements, and numerical simulation of advection of river water by the current velocity simulated by Regional Ocean Model System (ROMS). The importance of this study is in identification of the reasons of the transport of pollutants into the area of the Far Eastern Marine Reserve. The results of the study showed that such reasons are wind currents and mesoscale cyclonic eddies. These eddies were originally detected on satellite imagery and CTD and bio-optical measurements. The anomalies in the form of spots of the chlorophyll a (CHL) increased concentration were detected on satellite images in fall 2009. The oceanographic sections of CTD and bio-optical measurements through the anomalies show that they are cyclonic eddies. These eddies consist of two cores - upper and lower. The upper core is filled with river waters with low salinity, high values of CHL and colored dissolved organic matter content (CDOM). The lower core is filled with cold saline waters. The ROMS results show that eddies are generated as a result of symmetrical and centrifugal instabilities.


Asunto(s)
Bahías , Ríos , Clorofila A , Agua Dulce , Simulación por Computador
3.
Sci Total Environ ; 694: 133396, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31401512

RESUMEN

The Arabian Sea is prone to large-scale algal blooms during winter monsoon annually. However, it is unclear why dinoflagellate, especially Noctiluca scintillans, replaced diatoms as the main bloom species. Based on in situ, remote sensing and numerical-model data off Pakistan, we found a stratified water with less salty, suitable temperature (~24 °C) and low-light conditions at the subsurface, as well as the organic nutrient accumulation and silicate limitation, were crucial for the growth of N. scintillans and outcompeting diatoms. The superposition of cyclonic eddy promoted N. scintillans pumping to surface and forming large-scale bloom. Subsequently, the shading effect of surface bloom caused the disappearance of subsurface chlorophyll maximum layer. This result suggests that the combined effects of nutrient structure and hydrodynamics play an important role in the prevalence of N. scintillans.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Dinoflagelados/crecimiento & desarrollo , Monitoreo del Ambiente , Eutrofización , Pakistán , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Agua de Mar , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA