Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Parasitol ; 110(2): 159-169, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629270

RESUMEN

Dicyemids (phylum Dicyemida) are the most common and most characteristic endosymbionts in the renal sacs of benthic cephalopod molluscs: octopuses and cuttlefishes. Typically, 2 or 3 dicyemid species are found in a single specimen of the host, and most dicyemids have high host specificity. Host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment; therefore, phylogenies of interacting groups are often congruent due to repeated co-speciation. Most frequently, however, host and parasite phylogenies are not congruent, which can be explained by processes such as host switching and other macro-evolutionary events. Here, the history of dicyemids and their host cephalopod associations were studied by comparing their phylogenies. Dicyemid species were collected from 8 decapodiform species and 12 octopodiform species in Japanese waters. Using whole mitochondrial cytochrome c oxidase subunit 1 (COI) sequences, a phylogeny of 37 dicyemid species, including 4 genera representing the family Dicyemidae, was reconstructed. Phylogenetic trees derived from analyses of COI genes consistently suggested that dicyemid species should be separated into 3 major clades and that the most common genera, Dicyema and Dicyemennea, are not monophyletic. Thus, morphological classification does not reflect the phylogenetic relationships of these 2 genera. Divergence (speciation) of dicyemid species seems to have occurred within a single host species. Possible host-switching events may have occurred between the Octopodiformes and Decapodiformes or within the Octopodiformes or the Decapodiformes. Therefore, the mechanism of dicyemid speciation may be a mixture of host switching and intra-host speciation. This is the first study in which the process of dicyemid diversification involving cephalopod hosts has been evaluated with a large number of dicyemid species and genera.


Asunto(s)
Octopodiformes , Parásitos , Animales , Filogenia , Invertebrados/anatomía & histología , Invertebrados/genética , Decapodiformes/parasitología
2.
Ecotoxicol Environ Saf ; 145: 103-110, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28710949

RESUMEN

Arsenic and Cadmium concentrations in Todarodes pacificus (4 males and 4 females), Sepia longipes (1 male and 3 unknown), five Sepia madokai caught in 2012 (1 male and 4 females) and five S. madokai caught in 2014 (5 females) were collected from the East China Sea (ECS) during intervals from 2010 Oct. through to 2014 Oct. The internal organs were vacuum dried and the elements were measured by ICP-MS. Among the toxic elements, As, Cd, and Hg in the digestive gland, gonads and branchial hearts of squids and cuttlefishes were measured separately. The squid T. pacificus practically inhabits offshore, whereas cuttlefishes, such as S. longipes and S. madokai, inhabit bottom coastal waters in the ECS. Cd concentration in digestive gland of T. pacificus and S. madokai is higher than similar species from other regions. This high concentration seems to be derived from anthropogenic activities and geological conditions present in the ECS. The squid and cuttlefish also accumulate high amounts of As, not only in their digestive gland but also in other organs. Arsenic could be derived from high volcanic activities. In the case of Hg, the muscles were reported to contain the highest concentration in the species studied, but unlike concentration of Cd in digestive gland, it was high compared to other studies. These elements can be utilized as indicators for environmental pollution in marine systems. For monitoring of harmful elements in squids and cuttlefish, for example Cd and As in the digestive gland and Hg in mantle should be measured.


Asunto(s)
Arsénico/análisis , Cadmio/análisis , Decapodiformes/química , Monitoreo del Ambiente/métodos , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Animales , Decapodiformes/crecimiento & desarrollo , Femenino , Masculino , Músculos/química , Océanos y Mares , Especificidad de Órganos , Sepia/química , Sepia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA