Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Heliyon ; 10(17): e36671, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263086

RESUMEN

In a world grappling with climate change, understanding the enduring impact of changes in temperatures on insect adult traits is crucial. It is proposed that cold- and warm-adapted species exhibit specialized behavioural and physiological responses to their respective temperature ranges. In contrast, generalist species maintain more stable metabolic and developmental rates across a broader range of temperatures, reflecting their ability to exploit diverse thermal niches. Here, we explored this intricate response to temperature exposure in three Drosophila species: Drosophila ezoana originating in Arctic regions, D. novamexicana in arid, hot environments, and in the cosmopolitan species D. virilis. Rearing these flies at 15, 20, 25, and 30 °C revealed striking variations in their cuticular hydrocarbon (CHC) profiles, known to mediate mate recognition and prevent water loss in insects. The cold-adapted D. ezoana consistently exhibited reduced CHC levels with increasing temperatures, while the warm-adapted D. novamexicana and the cosmopolitan D. virilis displayed more nuanced responses. Additionally, we observed a significant influence of rearing temperature on the mating behaviour of these flies, where those reared at the extreme temperatures, 15 and 30 °C, exhibiting reduced mating success. Consequently, this led to a decrease in the production of adult offspring. Also, these adult offspring underwent notable alterations in life history traits, reaching adulthood more rapidly at 25 and 30 °C but with lower weight and reduced longevity. Furthermore, among these offspring, those produced by the cold-adapted D. ezoana were more vulnerable to desiccation and starvation than those from the warm-adapted D. novamexicana and the cosmopolitan D. virilis. In summary, our research demonstrates that Drosophila species from diverse ecological regions exhibit distinct responses to temperature changes, as evidenced by variations in CHC profiles, mating behaviours, fertility, and life history traits. This provides valuable insights into how environmental conditions shape the biology and ecology of insects.

2.
Insects ; 15(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39194804

RESUMEN

Diptera identification is fundamental in forensic entomology as well as in funerary archeoentomology, where the challenge is exacerbated by the presence of immature stages such as larvae and puparia. In these two developmental stages, specimens possess a very limited number of diagnostic features, and for puparia, there is also a lack of identification tools such as descriptions and identification keys. Morphological analysis, DNA-based techniques, and cuticular chemical analyses all show good potential for species identification; however, they also have some limitations. DNA-based identification is primarily hindered by the incompleteness of genetic databases and the presence of PCR inhibitors often co-extracted from the puparial cuticle. Chemical analysis of the cuticle is showing promising results, but this approach is also limited by the insufficient profile database and requires specific, expensive equipment, as well as trained personnel. Additionally, to ensure the repeatability of the analysis-a critical aspect in forensic investigations-and to preserve precious and unique specimens from museum collections, non-invasive protocols and techniques must be prioritized for species identification.

3.
Ecol Evol ; 14(8): e70063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091327

RESUMEN

Eusocial insects, such as ants and termites, are characterized by high levels of coordinated social organization. This is contrasted by solitary insects that display more limited forms of collective behavior. It has been hypothesized that this gradient in sociobehavioral sophistication is positively correlated with chemical profile complexity, due to a potentially increased demand for diversity in chemical communication mechanisms in insects with higher levels of social complexity. However, this claim has rarely been assessed empirically. Here, we compare different levels of chemical and transcriptomic complexity in selected species of the order Blattodea that represent different levels of social organization, from solitary to eusocial. We primarily focus on cuticular hydrocarbon (CHC) complexity, since it has repeatedly been demonstrated that CHCs are key signaling molecules conveying a wide variety of chemical information in solitary as well as eusocial insects. We assessed CHC complexity and divergence between our studied taxa of different social complexity levels as well as the differentiation of their respective repertoires of CHC biosynthesis gene transcripts. Surprisingly, we did not find any consistent pattern of chemical complexity correlating with social complexity, nor did the overall chemical divergence or transcriptomic repertoire of CHC biosynthesis genes reflect on the levels of social organization. Our results challenge the assumption that increasing social complexity is generally reflected in more complex chemical profiles and point toward the need for a more cautious and differentiated view on correlating complexity on a chemical, genetic, and social level.

4.
R Soc Open Sci ; 11(6): 231837, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100179

RESUMEN

Insect societies discriminate against foreigners to avoid exploitation. In ants, helper workers only accept individuals with the familiar chemical cues of their colony. Similarly, unfamiliar eggs may get rejected at their first appearance in the nest. We investigated egg acceptance mechanisms by introducing different types of foreign eggs into worker groups of the ant Camponotus floridanus. Workers from established colonies familiar with queen-laid eggs always accepted eggs from highly fecund queens, but worker-laid eggs only after exposure for several weeks. Workers naive to eggs only rejected worker-laid eggs once they had prior exposure to eggs laid by highly fecund queens, suggesting that prior exposure to such eggs is necessary for discrimination. The general acceptance of eggs from highly fecund queens, irrespective of previous worker egg exposure, suggests an innate response to the queen pheromone these eggs carry. Workers learned to accept queen-laid eggs from different species, indicating high flexibility in learning egg-recognition cues. In incipient colonies with queen-laid eggs that carry a weak queen pheromone, worker-laid eggs were more likely to get accepted than queen-laid eggs from a different species, suggesting that the similarity of egg-recognition cues between the two types of C. floridanus eggs increases acceptance.

5.
Behav Ecol ; 35(5): arae061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139623

RESUMEN

Chemical cues and signals, especially in insects, play a pivotal role in mediating interactions between individuals. Past studies have largely focused on adult semiochemicals and have neglected those of juvenile stages. Especially in the context of parental care, the larval odor might have a profound impact on parenting behavior, guiding parents in how much resources they should allocate to the different developmental stages. However, whether ontogenetic changes occur in subsocial species and whether larval-emitted scents influence parent-offspring interactions is largely unknown. Using 3 different sampling techniques, we analyzed the cuticular and VOC profile of the 3 larval instars of the burying beetle Nicrophorus vespilloides, which is known for its elaborate parental care. We found distinct differences in the cuticular and VOC profiles across the 3 larval stages. Second-instar larvae, which receive more frequent feedings from parents than the other larval stages, released greater amounts of acetophenone, methyl geranate, and octanoic acid isopropyl ester than the first and third instar. Additionally, using a newly developed bioassay with automated video tracking, we found that adding the odor of second-instar larvae to first-instar larvae increased the number of maternal feeding trips. Our results suggest that the odor produced by larvae plays an important role in mediating parent-offspring interactions. Given these findings, burying beetles might emerge as a promising candidate for identifying a potential begging pheromone.

6.
Int J Legal Med ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103637

RESUMEN

Necrophagous flies, particularly blowflies, serve as vital indicators in forensic entomology and ecological studies, contributing to minimum postmortem interval estimations and environmental monitoring. The study investigates variations in the predominant cuticular hydrocarbons (CHCs) viz. n-C25, n-C27, n-C28, and n-C29 of empty puparia of Calliphora vicina Robineau-Desvoidy, 1830, (Diptera: Calliphoridae) across diverse environmental conditions, including burial, above-ground and indoor settings, over 90 days. Notable trends include a significant decrease in n-C25 concentrations in buried and above-ground conditions over time, while n-C27 concentrations decline in buried and above-ground conditions but remain stable indoors. Burial conditions show significant declines in n-C27 and n-C29 concentrations over time, indicating environmental influences. Conversely, above-ground conditions exhibit uniform declines in all hydrocarbons. Indoor conditions remain relatively stable, with weak correlations between weathering time and CHC concentrations. Additionally, machine learning techniques, specifically Extreme Gradient Boosting (XGBoost), are employed for age estimation of empty puparia, yielding accurate predictions across different outdoor and indoor conditions. These findings highlight the subtle responses of CHC profiles to environmental stimuli, underscoring the importance of considering environmental factors in forensic entomology and ecological research. The study advances the understanding of insect remnant degradation processes and their forensic implications. Furthermore, integrating machine learning with entomological expertise offers standardized methodologies for age determination, enhancing the reliability of entomological evidence in legal contexts and paving the way for future research and development.

7.
Pestic Biochem Physiol ; 203: 106012, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084804

RESUMEN

Liriomyza trifolii, an invasive pest, poses a substantial threat to horticultural and vegetable plants. It spreads rapidly, especially in hot weather, leading to large-scale outbreaks with strong thermotolerance and insecticide resistance. In this study, mortality and LtCYP4g1 expression in L. trifolii were evaluated after thermal and insecticides exposure. Furthermore, functional verification of LtCYP4g1 was conducted through RNA interference and bacterial survival assays in Escherichia coli containing recombinant LtCYP4g1 protein. Results indicated that a short time exposure to high temperature incresed insecticide tolerance of L. trifolii, attributed to decreased mortality and induced LtCYP4g1 expression; LtCYP4g1 was involved in stimulating synthesis of cuticular hydrocarbons (CHCs) and elevating epicuticle lipid content and thickness, and E. coli cells overexpressing LtCYP4g1 exhibited significant tolerance to thermal and insecticide stress. In general, P450-mediated tolerance of L. trifolii was enhanced by high temperature, with LtCYP4g1 playing a role in promoting biosynthesis of CHCs for thickening epidermal lipid barrier and reducing cuticular penetration. This study provides a framework for delving into the function of CYP450s in insecticide detoxification and illustrates the role of global warming in driving the evolution of L. trifolii.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Insecticidas , Ivermectina , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Animales , Insecticidas/farmacología , Ivermectina/análogos & derivados , Ivermectina/farmacología , Resistencia a los Insecticidas/genética , Hidrocarburos/metabolismo , Calor , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escarabajos/efectos de los fármacos , Escarabajos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
8.
Evolution ; 78(9): 1606-1618, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38864438

RESUMEN

Theoretically, males should increase their ejaculate expenditure when the probability of sperm competition occurring (or risk) is high but decrease ejaculate expenditure as the number of competing ejaculates (or intensity) increases. Here we examine whether male decorated crickets (Gryllodes sigillatus) use cuticular hydrocarbons (CHCs) transferred to females by rival males at mating to assess the risk and intensity of sperm competition and adjust their ejaculate accordingly. Unmated females and those perfumed with CHCs extracted from one, three, or five males could be distinguished chemically, providing a reliable cue of the risk and intensity of sperm competition. In agreement with theory, males mating with these females increased sperm number with the risk of sperm competition and decreased sperm number with the intensity of sperm competition. Similarly, as the risk of sperm competition increased, males produced a larger and more attractive spermatophylax (an important non-sperm component of the ejaculate) but these traits did not vary with the intensity of sperm competition. Our results therefore demonstrate that both sperm and non-sperm components of the male ejaculate respond to the risk and intensity of sperm competition in different ways and that CHCs provide males with an important cue to strategically tailor their ejaculate.


Asunto(s)
Gryllidae , Hidrocarburos , Conducta Sexual Animal , Espermatozoides , Animales , Masculino , Gryllidae/fisiología , Espermatozoides/fisiología , Hidrocarburos/metabolismo , Hidrocarburos/química , Femenino , Recuento de Espermatozoides
9.
Mol Ecol ; 33(13): e17417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38808556

RESUMEN

A co-evolutionary arms race ensues when parasites exhibit exploitative behaviour, which prompts adaptations in their hosts, in turn triggering counter-adaptations by the parasites. To unravel the genomic basis of this coevolution from the host's perspective, we collected ants of the host species Temnothorax longispinosus, parasitized by the social parasite Temnothorax americanus, from 10 populations in the northeastern United States exhibiting varying levels of parasite prevalence and living under different climatic conditions. We conducted a genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with both prevalence and climate. Our investigation highlighted a multitude of candidate SNPs associated with parasite prevalence, particularly in genes responsible for sensory perception of smell including odorant receptor genes. We further focused on population-specific compositions of cuticular hydrocarbons, a complex trait important for signalling, communication and protection against desiccation. The relative abundances of n-alkanes were correlated with climate, while there was only a trend between parasite prevalence and the relative abundances of known recognition cues. Furthermore, we identified candidate genes likely involved in the synthesis and recognition of specific hydrocarbons. In addition, we analysed the population-level gene expression in the antennae, the primary organ for odorant reception, and established a strong correlation with parasite prevalence. Our comprehensive study highlights the intricate genomic patterns forged by the interplay of diverse selection factors and how these are manifested in the expression of various phenotypes.


Asunto(s)
Hormigas , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Receptores Odorantes , Animales , Hormigas/genética , Hormigas/parasitología , Receptores Odorantes/genética , Clima , Interacciones Huésped-Parásitos/genética , Adaptación Fisiológica/genética , Odorantes , Hidrocarburos/metabolismo
10.
J Chem Ecol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727793

RESUMEN

Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.

11.
Ecol Evol ; 14(4): e11274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38654710

RESUMEN

Animal societies use nestmate recognition to protect against social cheaters and parasites. In most social insect societies, individuals recognize and exclude any non-nestmates and the roles of cuticular hydrocarbons as recognition cues are well documented. Some ambrosia beetles live in cooperatively breeding societies with farmed fungus cultures that are challenging to establish, but of very high value once established. Hence, social cheaters that sneak into a nest without paying the costs of nest foundation may be selected. Therefore, nestmate recognition is also expected to exist in ambrosia beetles, but so far nobody has investigated this behavior and its underlying mechanisms. Here we studied the ability for nestmate recognition in the cooperatively breeding ambrosia beetle Xyleborinus saxesenii, combining behavioural observations and cuticular hydrocarbon analyses. Laboratory nests of X. saxesenii were exposed to foreign adult females from the same population, another population and another species. Survival as well as the behaviours of the foreign female were observed. The behaviours of the receiving individuals were also observed. We expected that increasing genetic distance would cause increasing distance in chemical profiles and increasing levels of behavioural exclusion and possibly mortality. Chemical profiles differed between populations and appeared as variable as in other highly social insects. However, we found only very little evidence for the behavioural exclusion of foreign individuals. Interpopulation donors left nests at a higher rate than control donors, but neither their behaviours nor the behaviours of receiver individuals within the nest showed any response to the foreign individual in either of the treatments. These results suggest that cuticular hydrocarbon profiles might be used for communication and nestmate recognition, but that behavioural exclusion of non-nestmates is either absent in X. saxesenii or that agonistic encounters are so rare or subtle that they could not be detected by our method. Additional studies are needed to investigate this further.

12.
Naturwissenschaften ; 111(3): 24, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634907

RESUMEN

When an insect walks, it leaves chemical cues that derive from the arolium, a tarsal structure. These cues may contain important information about other species that occur in their community and can then mediate interactions of competition, predation, and information about resources with ants from their own colony. The compounds of these cues are released into the substrate in the form of chemical footprints. There are still few species studied, and little is known about the behavior of ants regarding these signals and how they use them in their interactions. Therefore, the aim of this study was to assess the behavioral strategy of different ant species when confronted with chemical footprints left by other ants, as well as identify their compounds and their relationship with the cuticular hydrocarbon profile. The experiments were performed using a Y-maze, where in one of the arms, there were chemical footprints of their own species or of other species, and the other Y arm was footprint-free. The chemical compounds of footprints and cuticle were analyzed by gas chromatography-mass spectrometry. The results show that foragers of all species detect and respond to the presence of chemical cues in the form of footprints left by other ants. Foragers of all species followed footprints of individuals of the same species both nestmates and non-nestmates; however, Neoponera villosa avoided the footprints of Cephalotes borgmeieri, and C. borgmeieri avoided the footprints of the other two species. The chemical compositions of the cuticle and footprints are related to each other and are specific to each species.


Asunto(s)
Hormigas , Humanos , Animales , Conducta Predatoria , Señales (Psicología) , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos
13.
Proc Biol Sci ; 291(2018): 20232518, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38444335

RESUMEN

Mate recognition is paramount for sexually reproducing animals, and many insects rely on cuticular hydrocarbons (CHCs) for close-range sexual communication. To ensure reliable mate recognition, intraspecific sex pheromone variability should be low. However, CHCs can be influenced by several factors, with the resulting variability potentially impacting sexual communication. While intraspecific CHC variability is a common phenomenon, the consequences thereof for mate recognition remain largely unknown. We investigated the effect of CHC variability on male responses in a parasitoid wasp showing a clear-cut within-population CHC polymorphism (three distinct female chemotypes, one thereof similar to male profiles). Males clearly discriminated between female and male CHCs, but not between female chemotypes in no-choice assays. When given a choice, a preference hierarchy emerged. Interestingly, the most attractive chemotype was the one most similar to male profiles. Mixtures of female CHCs were as attractive as chemotype-pure ones, while a female-male mixture negatively impacted male responses, indicating assessment of the entire, complex CHC profile composition. Our study reveals that the evaluation of CHC profiles can be strict towards 'undesirable' features, but simultaneously tolerant enough to cover a range of variants. This reconciles reliable mate recognition with naturally occurring variability.


Asunto(s)
Reproducción , Atractivos Sexuales , Femenino , Masculino , Animales , Comunicación , Polimorfismo Genético , Reconocimiento en Psicología
14.
J Insect Sci ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387433

RESUMEN

The spotted amber ladybird, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), is known to be a potent predator of aphids, psyllids, whiteflies, mealybugs, and some butterfly species. This ladybeetle overwinters in the diapausing adult stage. The current study aimed to evaluate the impact of diapause on the energy resources and cuticular hydrocarbons (CHCs) of the female ladybeetle, specifically comparing the changes in glycogen, lipid, and protein contents, and CHCs profile of diapausing and non-diapausing adults. In this study, gas chromatography-mass was used to analyze whole-body extracts of the beetles. Results showed no significant differences between the amount of glycogen, lipid, and protein contents of diapausing and non-diapausing ladybeetle. The CHCs profile of H. variegata consisted of 24 hydrocarbons categorized into 2 groups: linear aliphatic hydrocarbons (n-alkanes) and methyl-branched hydrocarbons (17 molecules), as well as unsaturated cyclic compounds (7 molecules). The n-alkanes, with 14 compounds, were identified as the primary constituents of the CHCs of the ladybeetle. Six molecules were common to non-diapausing and diapausing beetles, 5 were exclusive to non-diapausing beetles, and 13 were exclusive to diapausing beetles. Moreover, we noted a significant difference in the quantity and quality of CHCs between diapausing and non-diapausing beetles, with diapausing beetles synthesizing more CHCs with longer chains. This disparity in CHC profiles was concluded to be an adaptation of H. variegata to survive harsh environmental conditions during diapause.


Asunto(s)
Escarabajos , Diapausa de Insecto , Diapausa , Femenino , Animales , Hidrocarburos , Escarabajos/fisiología , Alcanos , Glucógeno , Lípidos
15.
J Chem Ecol ; 50(5-6): 214-221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396141

RESUMEN

The bee louse Braula spp. had until recently a distribution coincident with its host the honey bee. The adult fly usually attaches to a worker honey bee and steals food from its mouth. However, not all worker bees carry Braula spp. and the mechanism used by Braula spp. to select hosts is not well understood. Using choice remounting bioassays and chemical analyses, we determined host selection and the cues used by B. coeca, a species associated with the African honey bee Apis mellifera scutellata. Braula coeca successfully remounted bees from which they were initially removed and preferred their mandibular gland pheromones (MDG) over those of bees not carrying them. The bee lice did not show any preference for the cuticular hydrocarbons of both types of workers. Chemical analyses of the MDG extracts, revealed quantitative differences between the two categories of workers, with workers carrying B. coeca having more of the queen substance (9-oxo-2(E)-decenoic acid) and worker substance (10-hydroxy-2(E)-decenoic). Braula coeca showed a dose response to the queen substance, indicating its ability to use host derived kairomones as cues that allowed it to benefit from trophallactic dominance by individuals that have a higher probability of being fed by other workers.


Asunto(s)
Feromonas , Animales , Abejas/parasitología , Abejas/fisiología , Feromonas/metabolismo , Feromonas/química , Dípteros/fisiología , Hidrocarburos/metabolismo , Hidrocarburos/química , Interacciones Huésped-Parásitos , Conducta Animal/efectos de los fármacos , Ácidos Grasos Monoinsaturados/metabolismo
16.
Plants (Basel) ; 13(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256769

RESUMEN

Ants patrol foliage and exert a strong selective pressure on herbivorous insects, being their primary predators. As ants are chemically oriented, some organisms that interact with them (myrmecophiles) use chemical strategies mediated by their cuticular hydrocarbons (CHCs) to deal with ants. Thus, a better understanding of the ecology and evolution of the mutualistic interactions between myrmecophiles and ants depends on the accurate recognition of these chemical strategies. Few studies have examined whether treehoppers may use an additional strategy called chemical camouflage to reduce ant aggression, and none considered highly polyphagous pest insects. We analyzed whether the chemical similarity of the CHC profiles of three host plants from three plant families (Fabaceae, Malvaceae, and Moraceae) and the facultative myrmecophilous honeydew-producing treehopper Aetalion reticulatum (Hemiptera: Aetalionidae), a pest of citrus plants, may play a role as a proximate mechanism serving as a protection against ant attacks on plants. We found a high similarity (>80%) between the CHCs of the treehoppers and two of their host plants. The treehoppers acquire CHCs through their diet, and the chemical similarity varies according to host plant. Chemical camouflage on host plants plays a role in the interaction of treehoppers with their ant mutualistic partners.

17.
Insect Biochem Mol Biol ; 164: 104041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008364

RESUMEN

The cytochrome P450 enzymes of the CYP4G subfamily are some of the most intriguing insect P450s in terms of structure and function. In Drosophila, CYP4G1 is highly expressed in the oenocytes and is the last enzyme in the biosynthesis of cuticular hydrocarbons, while CYP4G15 is expressed in the brain and is of unknown function. Both proteins have a CYP4G-specific and characteristic amino acid sequence insertion corresponding to a loop between the G and H helices whose function is unclear. Here we address these enigmatic structural and functional features of Drosophila CYP4Gs. First, we used reverse genetics to generate D. melanogaster strains in which all or part of the CYP4G-specific loop was removed from CYP4G1. We showed that the full loop was not needed for proper folding of the P450, but it is essential for function, and that just a short stretch of six amino acids is required for the enzyme's ability to make hydrocarbons. Second, we confirmed by immunocytochemistry that CYP4G15 is expressed in the brain and showed that it is specifically associated with the cortex glia cell subtype. We then expressed CYP4G15 ectopically in oenocytes, revealing that it can produce of a blend of hydrocarbons, albeit to quantitatively lower levels resulting in only a partial rescue of CYP4G1 knockdown flies. The CYP4G1 structural variants studied here should facilitate the biochemical characterization of CYP4G enzymes. Our results also raise the question of the putative role of hydrocarbons and their synthesis by cortex glial cells.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Insectos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hidrocarburos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
18.
Proc Biol Sci ; 290(2008): 20231494, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37817592

RESUMEN

Supergenes, tightly linked sets of alleles, offer some of the most spectacular examples of polymorphism persisting under long-term balancing selection. However, we still do not understand their evolution and persistence, especially in the face of accumulation of deleterious elements. Here, we show that an overdominant supergene in seaweed flies, Coelopa frigida, modulates male traits, potentially facilitating disassortative mating and promoting intraspecific polymorphism. Across two continents, the Cf-Inv(1) supergene strongly affected the composition of male cuticular hydrocarbons (CHCs) but only weakly affected CHC composition in females. Using gas chromatography-electroantennographic detection, we show that females can sense male CHCs and that there may be differential perception between genotypes. Combining our phenotypic results with RNA-seq data, we show that candidate genes for CHC biosynthesis primarily show differential expression for Cf-Inv(1) in males but not females. Conversely, candidate genes for odorant detection were differentially expressed in both sexes but showed high levels of divergence between supergene haplotypes. We suggest that the reduced recombination between supergene haplotypes may have led to rapid divergence in mate preferences as well as increasing linkage between male traits, and overdominant loci. Together this probably helped to maintain the polymorphism despite deleterious effects in homozygotes.


Asunto(s)
Dípteros , Animales , Masculino , Femenino , Dípteros/genética , Polimorfismo Genético , Genotipo , Fenotipo , Hidrocarburos/metabolismo , Percepción
19.
Neotrop Entomol ; 52(6): 1041-1056, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37861965

RESUMEN

Chemical communication plays a major role in regulating social dynamics in social insect colonies. The most studied class of chemical compounds are the cuticular hydrocarbons (CHCs), compounds with high molecular weight that cover the insect body. CHCs are used in nestmate recognition and to signal reproductive status. Brood, in the form of larvae and eggs, is known to participate in chemical communication and social dynamics by performing hunger behaviour and inducing interaction with adults and conferring nest and maternity identity. CHCs of adults and egg surface compounds are similar in composition in social insect species. The main source of egg compounds is proposed to be Dufour's gland, an accessory reproductive gland found in several Hymenoptera females. There is still a lack of information about the level of similarity among CHCs, compounds of egg surface and Dufour's gland for several wasp species, which could provide correlational evidence about the origins of egg-marking compounds. Thus, we investigated whether egg surface compounds were more similar to CHCs or Dufour's gland secretions in two Neotropical primitively eusocial wasp species, Polistes versicolor (Olivier) and Mischocyttarus metathoracicus (de Saussure, 1854). As expected, there was a higher chemical similarity between eggs and Dufour's gland secretions in both studied species, supporting the hypothesis that this gland is the source of chemical compounds found over the eggs in these two primitively eusocial species.


Asunto(s)
Avispas , Humanos , Embarazo , Femenino , Animales , Avispas/fisiología , Reproducción , Larva , Hidrocarburos
20.
Environ Sci Pollut Res Int ; 30(47): 103851-103861, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37695481

RESUMEN

Fungus-based biopesticides have been used worldwide for crop pest control as a safer alternative to chemical pesticides such as neonicotinoids. Both agrochemicals can be lethal and may also trigger side effects on the behavioral traits of non-target social insects, which play a crucial role in providing essential biological pest control services in agroecosystems. Here, we evaluated whether a commercial formulation of the entomopathogenic fungus Beauveria bassiana or the neonicotinoid imidacloprid causes mortality in foragers of Mischocyttarus metathoracicus. These social wasps are natural enemies of caterpillars and other herbivorous insects and inhabit both urban and agricultural environments in Brazil. We also tested whether wasps discriminate between biopesticide-exposed and unexposed conspecifics. Through a combination of laboratory (survival assay) and field experiments (lure presentation), along with chemical analyses (cuticular hydrocarbon profiles), we showed that topic exposure to the label rate of each pesticide causes a lethal effect, with the biopesticide exhibiting a slower effect. Moreover, wasps do not discriminate biopesticide-exposed from unexposed conspecifics, likely because of the similarity of their cuticular chemical profiles 24 h after exposure. Overall, the delayed lethal time at the individual level, combined with the indistinctive chemical cues of exposure and the lack of discrimination by conspecifics suggests that the fungal biopesticide may ultimately pose a threat to the colony survival of this predatory wasp.


Asunto(s)
Beauveria , Plaguicidas , Avispas , Animales , Agentes de Control Biológico , Hidrocarburos/análisis , Control Biológico de Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA