Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Hum Reprod ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241807

RESUMEN

STUDY QUESTION: Is there a difference in clinical pregnancy rates (CPRs) in good prognosis patients after single embryo transfer (SET) on Day 5, in case of stable culture at 36.6°C or 37.1°C? SUMMARY ANSWER: CPR (with heartbeat at 7 weeks) after blastocyst transfer do not differ after culturing at 36.6°C or 37.1°C. WHAT IS KNOWN ALREADY: Since the beginning of IVF, embryo culture has been performed at 37.0°C; however, the optimal culture temperature remains unknown. Changes in incubator types have led to significant improvements in temperature control. Stable temperature control, i.e. with temperature differences of max. 0.1°C between chambers, is possible in some incubators. A previous prospective pilot study showed that embryo development on Day 5/6 was not affected when embryos were cultured at a stable temperature of 36.6°C or 37.1°C, but culture at 37.1°C resulted in an increased CPR when compared to culture at 36.6°C (74.2% vs 46.4%). STUDY DESIGN, SIZE, DURATION: A prospective randomized controlled trial was performed in a tertiary fertility centre between February 2017 and November 26, 2022. A sample size of 89/89 patients with fresh single embryo transfer (SET) was required to achieve 80% power to detect a difference of 0.22 between group proportions (0.43-0.65) at a significance level of 0.05 using a two-sided z-test with continuity correction. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients were recruited on the day of oocyte retrieval based on inclusion criteria with final randomization after denudation once six mature oocytes were present. The primary endpoint was CPR (heartbeat at 7 weeks); secondary endpoints were fertilization rate, blastocyst development, biochemical pregnancy rate, live birth rate (LBR), and cumulative live birth rate (CLBR). MAIN RESULTS AND THE ROLE OF CHANCE: A total of 304 patients were eligible for the study; of these 268 signed the consent, 234 (intention-to-treat) were randomized and 181 (per-protocol) received a SET on Day 5: 90 received culture at 36.6°C and 91 at 37.1°C. Patients were on average 32.4 ± 3.5 versus 32.5 ± 4.2 years old, respectively. No differences were observed in embryological outcomes per cycle between culture at 36.6°C versus 37.1°C: 12.0 ± 3.8 vs 12.1 ± 3.8 COCs retrieved (P = 0.88), 10.0 ± 3.1 versus 9.9 ± 2.9 mature oocytes inseminated (P = 0.68), with a maturation rate of 84.2% (901/1083) versus 83.5% (898/1104) (P = 0.87); and 8.0 ± 3.1 versus 7.9 ± 2.7 normally fertilized oocytes with a fertilization rate of 79.7% (720/901) vs 80.5% (718/898) (P = 0.96), respectively. On average 1.5 ± 1.7 versus 1.4 ± 1.9 (P = 0.25) and 1.1 ± 1.1 versus 0.9 ± 1.0 (P = 0.45) supernumerary blastocysts were vitrified on Day 5 and Day 6, respectively. The utilization rate per fertilized oocyte was 46.1% vs 41.5% (P = 0.14). A SET was performed for 181 patients, leading to a biochemical pregnancy rate of 72.2% (65/90) versus 62.7% (57/91) (P = 0.17), respectively. The CPR per fresh transfer cycle was 51.1% (46/90) versus 48.4% (44/91) [OR (95% CI) 1.11 (0.59-2.08), P = 0.710]. To date, a CLBR of 73.3% (66/90) versus 67.0% (61/91) (P = 0.354) has been observed, respectively. In each group, seven patients without live birth have remaining blastocysts frozen. The CPR for the intention-to-treat groups were 38.3% vs 38.6% [OR (95% CI) 0.98 (0.56-1.73), P = 0.967], respectively, for culture at 36.6°C versus 37.1°C. LIMITATIONS, REASONS FOR CAUTION: Only selected patients with expected good prognosis were eligible for the study. WIDER IMPLICATIONS OF THE FINDINGS: Embryos tend to tolerate small changes in temperature deviations during culture to the blastocyst stage, as demonstrated by their similar implantation potential at two slightly different temperatures. STUDY FUNDING/COMPETING INTEREST(S): There is no funding or conflicts of interest to declare. TRIAL REGISTRATION NUMBER: NCT03548532. TRIAL REGISTRATION DATE: 23 October 2017. DATE OF FIRST PATIENT'S ENROLMENT: 10 November 2017.

2.
Arch Toxicol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264451

RESUMEN

Proteomic investigations result in high dimensional datasets, but integration or comparison of different studies is hampered by high variances due to different experimental setups. In addition, cell culture conditions can have a huge impact on the outcome. This study systematically investigates the impact of experimental parameters on the proteomic profiles of commonly used cell lines-A549, differentiated THP-1 macrophage-like cells, and NR8383-for toxicity studies. The work focuses on analyzing the influence at the proteome level of cell culture setup involving different vessels, cell passage numbers, and post-differentiation harvesting time, aiming to improve the reliability of proteomic analyses for hazard assessment. Mass-spectrometry-based proteomics was utilized for accurate protein quantification by means of a label-free approach. Our results showed that significant proteome variations occur when cells are cultivated under different setups. Further analysis of these variations revealed their association to specific cellular pathways related to protein misfolding, oxidative stress, and proteasome activity. Conversely, the influence of cell passage numbers on the proteome is minor, suggesting a reliable range for conducting reproducible biological replicates. Notable, substantial proteome alterations occur over-time post-differentiation of dTHP-1 cells, particularly impacting pathways crucial for macrophage function. This finding is key for the interpretation of experimental results. These results highlight the need for standardized culture conditions in proteomic-based evaluations of treatment effects to ensure reliable results, a prerequisite for achieving regulatory acceptance of proteomics data.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39147444

RESUMEN

In the event of a large-scale incident involving radiological or nuclear exposures, there is a potential for large numbers of individuals to have received doses of radiation sufficient to cause adverse health effects. It is imperative to quickly identify these individuals in order to provide information to the medical community to assist in making decisions about their treatment. The cytokinesis-block micronucleus assay is a well-established method for performing biodosimetry. This assay has previously been adapted to imaging flow cytometry and has been validated as a high-throughput option for providing dose estimates in the range of 0-10 Gy. The goal of this study was to test the ability to further optimize the assay by reducing the time of culture to 48 h from 68 h as well as reducing the volume of blood required for the analysis to 200 µL from 2 mL. These modifications would provide efficiencies in time and ease of processing impacting the ability to manage large numbers of samples and provide dose estimates in a timely manner. Results demonstrated that either the blood volume or the culture time could be reduced while maintaining dose estimates with sufficient accuracy for triage analysis. Reducing both the blood volume and culture time, however, resulted in poor dose estimates. In conclusion, depending on the needs of the scenario, either culture time or the blood volume could be reduced to improve the efficiency of analysis for mass casualty scenarios.


Asunto(s)
Citocinesis , Citometría de Flujo , Pruebas de Micronúcleos , Pruebas de Micronúcleos/métodos , Humanos , Citometría de Flujo/métodos , Factores de Tiempo , Volumen Sanguíneo , Relación Dosis-Respuesta en la Radiación , Animales
4.
Foods ; 13(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39200441

RESUMEN

Lutein is widely used in medicine, health care, and food processing due to its antioxidant effects; however, it is difficult for the traditional extraction of lutein using marigolds to meet the increasing market demand for lutein. To achieve high-efficiency lutein production, we investigated the effects of different conditions on the biomass accumulation and lutein yield of Chlorella vulgaris. The optimized cultivation conditions include mixotrophic cultivation using sodium nitrate as a nitrogen source, maintaining a total-organic-carbon-to-total-nitrogen ratio of 12:1, a total-nitrogen-to-total-phosphorus ratio of 10:1, and lighting duration of 24 h. The results of the study indicated that under these specific conditions, Chlorella vulgaris attained a final biomass concentration, biomass productivity, and growth yield of 6.08 g·L-1, 1.00 g·L-1·d-1, and 1.67 g biomass/g TOC, respectively. Additionally, the concentrations of total chlorophyll, carotenoid, lutein, and protein reached 139.20 mg·L-1, 31.87 mg·L-1, 15.02 mg·L-1, and 2.17 g·L-1, respectively, and the content of lutein reached 2.47 mg·g-1. This study supplies a theoretical basis for the industrial application of lutein production using Chlorella vulgaris.

5.
Stem Cell Reports ; 19(8): 1217-1232, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38964325

RESUMEN

Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.


Asunto(s)
Cromosomas Humanos Par 1 , Células Madre Pluripotentes , Humanos , Cromosomas Humanos Par 1/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Técnicas de Cultivo de Célula/métodos , Apoptosis/genética , Células Nutrientes/citología , Línea Celular , Células Cultivadas
6.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987218

RESUMEN

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Asunto(s)
Plaquetas , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Neuronas Dopaminérgicas , Neuroblastoma , Humanos , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Línea Celular Tumoral , Plaquetas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/citología , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Tretinoina/farmacología , Fenotipo
7.
Pathogens ; 13(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39057796

RESUMEN

Aggressive forms of periodontitis, especially in young patients, are often associated with an increased proportion of the Gram-negative bacterium Aggregatibacter actinomycetemcomitans of the microbiota of the affected periodontal sites. One of the virulence factors of A. actinomycetemcomitans is a leukotoxin (LtxA) that induces a pro-inflammatory cell death process in leukocytes. A. actinomycetemcomitans exhibits a large genetic diversity and different genotypes vary in LtxA production capacity. The genotype JP2 is a heavy LtxA producer due to a 530-base pair deletion in the promoter for the toxin genes, and this trait has been associated with an increased pathogenic potential. The present study focused on the production and release of LtxA by different A. actinomycetemcomitans genotypes and serotypes under various growth conditions. Four different strains of this bacterium were cultured in two different culture broths, and the amount of LtxA bound to the bacterial surface or released into the broths was determined. The cultures were examined during the logarithmic and the early stationary phases of growth. The JP2 genotype exhibited the highest LtxA production among the strains tested, and production was not affected by the growth phase. The opposite was observed with the other strains. The composition of the culture broth had no effect on the growth pattern of the tested strains. However, the abundant release of LtxA from the bacterial surface into the culture broth was found in the presence of horse serum. Besides confirming the enhanced leucotoxicity of the JP2 genotype, the study provides new data on LtxA production in the logarithmic and stationary phases of growth and the effect of media composition on the release of the toxin from the bacterial membrane.

8.
Methods Mol Biol ; 2829: 79-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951328

RESUMEN

Adaptive laboratory evolution (ALE) is a powerful tool for enhancing the fitness of cell lines in specific applications, including recombinant protein production. Through adaptation to nonstandard culture conditions, cells can develop specific traits that make them high producers. Despite being widely used for microorganisms and, to lesser extent, for mammalian cells, ALE has been poorly leveraged for insect cells. Here, we describe a method for adapting insect High Five and Sf9 cells to nonstandard culture conditions via an ALE approach. Aiming to demonstrate the potential of ALE to improve productivity of insect cells, two case studies are demonstrated. In the first, we adapted insect High Five cells from their standard pH (6.2) to neutral pH (7.0); this adaptation allowed to improve production of influenza virus-like particles (VLPs) by threefold, using the transient baculovirus expression vector system. In the second, we adapted insect Sf9 cells from their standard culture temperature (27 °C) to hypothermic growth (22 °C); this adaptation allowed to improve production of influenza VLPs by sixfold, using stable cell lines. These examples demonstrate the potential of ALE for enhancing productivity within distinct insect cell hosts and expression systems by manipulating different culture conditions.


Asunto(s)
Proteínas Recombinantes , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Línea Celular , Células Sf9 , Baculoviridae/genética , Técnicas de Cultivo de Célula/métodos , Insectos/genética , Insectos/citología , Evolución Molecular Dirigida/métodos , Concentración de Iones de Hidrógeno , Temperatura
9.
Animals (Basel) ; 14(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891569

RESUMEN

Tilapia lake virus (TiLV) presents a substantial threat to global tilapia production. Despite the development of numerous cell lines for TiLV isolation and propagation, none have been specifically derived from red hybrid tilapia (Oreochromis spp.). In this study, we successfully established a new cell line, RHTiB, from the red hybrid tilapia brain. RHTiB cells were cultured for 1.5 years through over 50 passages and demonstrated optimal growth at 25 °C in Leibovitz-15 medium supplemented with 10% fetal bovine serum at pH 7.4. Morphologically, RHTiB cells displayed a fibroblast-like appearance, and cytochrome oxidase I gene sequencing confirmed their origin from Oreochromis spp. Mycoplasma contamination testing yielded negative results. The revival rate of the cells post-cryopreservation was observed to be between 75 and 80% after 30 days. Chromosomal analysis at the 25th passage revealed a diploid count of 22 pairs (2n = 44). While no visible cytopathic effects were observed, both immunofluorescence microscopy and RT-qPCR analysis demonstrated successful TiLV propagation in the RHTiB cell line, with a maximum TiLV concentration of 107.82 ± 0.22 viral copies/400 ng cDNA after 9 days of incubation. The establishment of this species-specific cell line represents a valuable advancement in the diagnostic and isolation tools for viral diseases potentially impacting red hybrid tilapia.

10.
J Extracell Vesicles ; 13(6): e12463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868945

RESUMEN

Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Biomarcadores/metabolismo , Citometría de Flujo/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/análisis , Células Cultivadas , Antígenos CD/metabolismo
11.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731950

RESUMEN

The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.


Asunto(s)
Ligamento Periodontal , Adulto , Femenino , Humanos , Masculino , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , RNA-Seq/métodos , Análisis de Expresión Génica de una Sola Célula/métodos , Transcriptoma
12.
Anal Biochem ; 692: 115581, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38815728

RESUMEN

A DNA polymerase from Thermus aquaticus remains the most popular among DNA polymerases. It was widely applied in various fields involving the application of polymerase chain reaction (PCR), implying the high commercial value of this enzyme. For this reason, an attempt to obtain a high yield of Taq DNA polymerase is continuously conducted. In this study, the l-rhamnose-inducible promoter rhaBAD was utilized due to its ability to produce recombinant protein under tight control in E. coli expression system. Instead of full-length Taq polymerase, an N-terminal deletion of Taq polymerase was selected. To obtain a high-level expression, we attempted to optimize the codon by reducing the rare codon and GC content, and in a second attempt, we optimized the culture conditions for protein expression. The production of Taq polymerase using the optimum culture condition improved the level of expression by up to 3-fold. This approach further proved that a high level of recombinant protein expression could be achieved by yielding a purified Taq polymerase of about 8.5 mg/L of culture. This is the first research publication on the production of Taq polymerase with N-terminal deletion in E. coli with the control of the rhaBAD promoter system.


Asunto(s)
Codón , Escherichia coli , Regiones Promotoras Genéticas , Proteínas Recombinantes , Polimerasa Taq , Escherichia coli/genética , Escherichia coli/metabolismo , Codón/genética , Polimerasa Taq/metabolismo , Polimerasa Taq/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Thermus/genética , Thermus/enzimología , Secuencia de Bases
13.
Cytotherapy ; 26(9): 999-1012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38819363

RESUMEN

BACKGROUND: In recent years, the importance of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) has increased significantly. For their widespread use, a standardized EV manufacturing is needed which often includes conventional, static 2D systems. For these system critical process parameters need to be determined. METHODS: We studied the impact of process parameters on MSC proliferation, MSC-derived particle production including EVs, EV- and MSC-specific marker expression, and particle functionality in a HaCaT cell migration assay. RESULTS: We found that cell culture growth surface and media affected MSCs and their secretory behavior. Interestingly, the materials that promoted MSC proliferation did not necessarily result in the most functional MSC-derived particles. In addition, we found that MSCs seeded at 4 × 103 cells cm-2 produced particles with improved functional properties compared to higher seeding densities. MSCs in a highly proliferative state did not produce the most particles, although these particles were significantly more effective in promoting HaCaT cell migration. The same correlation was found when investigating the cultivation temperature. A physiological temperature of 37°C was not optimal for particle yield, although it resulted in the most functional particles. We observed a proliferation-associated particle production and found potential correlations between particle production and glucose consumption, enabling the estimation of final particle yields. CONCLUSIONS: Our findings suggest that parameters, which must be defined prior to each individual cultivation and do not require complex and expensive equipment, can significantly increase MSC-derived particle production including EVs. Integrating these parameters into a standardized EV process development paves the way for robust and efficient EV manufacturing for early clinical phases.


Asunto(s)
Movimiento Celular , Proliferación Celular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Técnicas de Cultivo de Célula/métodos , Células HaCaT , Línea Celular
14.
Antibiotics (Basel) ; 13(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38666980

RESUMEN

Worldwide, bacterial resistance is one of the most severe public health problems. Currently, the failure of antibiotics to counteract superbugs highlights the need to search for new molecules with antimicrobial potential to combat them. The objective of this research was to evaluate the antimicrobial activity of Bacillus amyloliquefaciens BS4 against Gram-negative bacteria. Thirty yeasts and thirty-two Bacillus isolates were tested following the agar well-diffusion method. Four Bacillus sp. strains (BS3, BS4, BS17, and BS21) showed antagonistic activity against E. coli ATCC 25922 using bacterial culture (BC) and the cell-free supernatant (CFS), where the BS4 strain stood out, showing inhibitory values of 20.50 ± 0.70 mm and 19.67 ± 0.58 mm for BC and CFS, respectively. The Bacillus sp. BS4 strain can produce antioxidant, non-hemolytic, and antimicrobial metabolites that exhibit activity against several microorganisms such as Salmonella enterica, Klebsiella pneumoniae, Shigella flexneri, Enterobacter aerogenes, Proteus vulgaris, Yersinia enterocolitica, Serratia marcescens, Aeromonas sp., Pseudomonas aeruginosa, Candida albicans, and Candida tropicalis. According to the characterization of the supernatant, the metabolites could be proteinaceous. The production of these metabolites is influenced by carbon and nitrogen sources. The most suitable medium to produce antimicrobial metabolites was TSB broth. The one-factor-at-a-time method was used to standardize parameters such as pH, agitation, temperature, carbon source, nitrogen source, and salts, resulting in the best conditions of pH 7, 150 rpm, 28 °C, starch (2.5 g/L), tryptone (20 g/L), and magnesium sulfate (0.2 g/L), respectively. Moreover, the co-culture was an excellent strategy to improve antimicrobial activity, achieving maximum antimicrobial activity with an inhibition zone of 21.85 ± 1.03 mm. These findings position the Bacillus amyloliquefaciens BS4 strain as a promising candidate for producing bioactive molecules with potential applications in human health.

15.
Infect Drug Resist ; 17: 769-777, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433785

RESUMEN

Purpose: RNA terminal phosphate cyclase like 1 (RCL1) undergoes overexpression during the immune response of Candida albicans following drug treatment. This study aims to investigate the expression levels of RCL1 in C. albicans under various stress conditions. Methods: Fifteen itraconazole (ITR)-resistant strains of clinical C. albicans, and one standard strain were employed for RCL1 sequencing, and mutations in RCL1 were analyzed. Subsequently, 14 out of the 15 ITR-resistant clinical strains and 14 clinical strains sensitive to ITR, fluconazole (FCA) as well as voriconazole (VRC) were cultured under diverse conditions. The expression of RCL1 ITR-resistant and sensitive C. albicans was then assessed using real-time quantitative PCR (RT-qPCR) assays. Results: Compared to the standard strain, three missense mutations (C6A, G10A, and A11T) were identified in the RCL1 gene of ITR-resistant C. albicans through successful forward sequencing. Additionally, using successful reverse sequencing, one synonymous mutation (C1T) and four missense mutations (C1T, A3T, A7G, and T8G) were found in the RCL1 gene of ITR-resistant C. albicans. RCL1 expression was significantly higher in ITR-resistant C. albicans than in sensitive strains under standard conditions (37°C, 0.03% CO2, pH 4.0). Low temperature (25°C) increased RCL1 expression in sensitive C. albicans while decreasing it in ITR-resistant strains. Elevated CO2 concentrations (5% CO2) had a negligible effect on RCL1 expression in sensitive C. albicans, but effectively reduced RCL1 level in ITR-resistant strains. Furthermore, a medium with a pH of 7 decreased the expression of RCL1 in both resistant and sensitive C. albicans. Conclusion: This study demonstrated that RCL1 mutations in ITR-resistant C. albicans, and variations in culture conditions significantly influence RCL1 expression in both ITR-resistant and sensitive C. albicans, thereby inducing alterations in the dimorphism of C. albicans.

16.
Parasit Vectors ; 17(1): 116, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454463

RESUMEN

BACKGROUND: Schistosomiasis is a disease primarily caused by eggs laid by pathogens called schistosomes. Among the schistosome species infecting humans, Schistosoma japonicum possesses the largest fecundity; each adult female produces an average of 3500 eggs per day. The lack of proper culture conditions supporting continuous oviposition in vitro has precluded detailed investigation of mechanisms regulating sexual maturation and egg production in Schistosoma japonicum. METHODS: We optimized in vitro culture conditions by replacing reagents that are part of the classical ABC169 medium. Fast Blue BB staining and 4',6-diamidino-2-phenylindole (DAPI) labeling were applied to observe the sexual development status of the females. In vitro RNA interference (RNAi) technology was used to validate the capability of the modified medium. The detection of male ß-alanyl-tryptamine (BATT) was conducted using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Both m-AB169 (1640) and AB169 (1640) media are capable of facilitating the sexual development of paired virgin female S. japonicum, as well as sustaining the mature reproductive organs and egg production of adult S. japonicum for at least 22 days in vitro. M-AB169 (1640) provided a more stable condition for supporting the sexual maturity of female S. japonicum, as evidenced by the consistent initiation of egg production compared with AB169 (1640). Through a comparative analysis of S. japonicum and S. mansoni in diverse media, we demonstrated that these closely related species display distinct demands for their sexual development and egg production, suggesting a potential influence of nutritional factors on the observed variations in host ranges among different schistosome species. Importantly, we successfully identified the presence of the pheromone ß-alanyl-tryptamine (BATT) in S. japonicum, previously identified in S. mansoni, highlighting its conserved role in schistosome reproductive development. Through the employment of double-stranded RNA (dsRNA) treatment to silence two genes that are involved in either the male (gli1, glioma-associated oncogene homolog 1) or female (vf1, vitellogenic factor 1) side in male-induced female reproductive development of S. mansoni, we confirmed that the combination of m-AB169 (1640) and RNAi technology has the capacity to facilitate in vitro studies of S. japonicum's reproductive and oviposition processes. CONCLUSIONS: We developed a novel medium, m-AB169 (1640), that not only maintains the mature reproductive organs and continuous oviposition of adult female Schistosoma japonicum for up to 22 days but also supports the reproductive development and subsequent egg-laying of virgin females after pairing with male worms. This study provides a valuable in vitro platform for functional studies of the mechanisms underlying the fascinating biology of the female sexual development and egg production of S. japonicum, which may accelerate the development of new strategies targeting schistosome egg production.


Asunto(s)
Schistosoma japonicum , Schistosomatidae , Humanos , Animales , Masculino , Femenino , Schistosoma japonicum/genética , Oviposición , Reproducción , Genitales Femeninos , Triptaminas
17.
Stem Cells Dev ; 33(5-6): 117-127, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164117

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSC-EVs) have been proposed as a novel therapeutic tool with numerous clinically related advantages. However, their characteristics and functionality are dependent on the source of MSCs and their cell culture conditions. Fetal bovine serum (FBS) provides a source of nutrients and growth factors to the cultured cells. However, certain pitfalls are associated with its supplementation to the culture media, including introduction of exogenous FBS-derived EVs to the cultured cells. Thus, recent practices recommend utilization of serum-free (SF) media or EV-depleted FBS. On the contrary, evidence suggests that the immunomodulatory ability of MSC-EVs can be improved by exposing MSCs to an inflammatory (IF) environment. The objective of this study was to (1) compare EVs isolated from two tissue sources of MSCs that were exposed to various cell culture conditions and (2) to evaluate their anti-inflammatory effects. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and umbilical cord-derived mesenchymal stromal cells (UC-MSCs) were exposed to either a SF media environment, an IF environment, or media supplemented with 5% EV-depleted FBS. Following isolation of MSC-EVs, the isolates were quantified and evaluated for particle size, phenotypic changes, and their immunomodulatory potential. A statistically significant difference was not identified on the yield and protein concentration of different isolates of EVs from BM-MSCs and UC-MSCs, and all isolates had a circular appearance as evaluated via electron microscopy. A significant difference was identified on the phenotype of different EVs isolates; however, all isolates expressed classical markers such as CD9, CD63, and CD81. The addition of BM-derived MSC-EVs from FBS environment or UC-derived MSC-EVs from IF environment resulted in statistically significant downregulation of IL-6 messenger RNA (mRNA) in stimulated leukocytes. This study confirms that EVs produced by different MSC sources and cell culture conditions affect their phenotype and their immunomodulatory capacities.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Médula Ósea , Técnicas de Cultivo de Célula , Vesículas Extracelulares/metabolismo , Células Cultivadas , Cordón Umbilical , Medio de Cultivo Libre de Suero/farmacología , Células de la Médula Ósea
18.
J Assist Reprod Genet ; 41(3): 563-580, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246922

RESUMEN

PURPOSE: Are embryo culture conditions, including type of incubator, oxygen tension, and culture media, associated with obstetric or neonatal complications following in vitro fertilization (IVF)? METHODS: A systematic search of MEDLINE, EMBASE, and Cochrane Library was performed from January 01, 2008, until October 31, 2021. The studies reporting quantitative data on at least one of the primary outcomes (birthweight and preterm birth) for the exposure group and the control group were included. For oxygen tension, independent meta-analysis was performed using Review Manager, comparing hypoxia/normoxia. For culture media, a network meta-analysis was carried out using R software, allowing the inclusion of articles comparing two or more culture media. RESULTS: After reviewing 182 records, 39 full-text articles were assessed for eligibility. A total of 28 studies were kept for review. Meta-analysis about the impact of incubator type on perinatal outcomes could not be carried out because of a limited number of studies. For oxygen tension, three studies were included. The pairwise meta-analysis comparing hypoxia/normoxia did not show any statistical difference for birthweight and gestational age at birth. For culture media, 18 studies were included. The network meta-analysis failed to reveal any significant impact of different culture media on birthweight or preterm birth. CONCLUSION: No difference was observed for neonatal outcomes according to the embryo culture conditions evaluated in this review. Further research is needed about the safety of IVF culture conditions as far as future children's health is concerned.


Asunto(s)
Técnicas de Cultivo de Embriones , Fertilización In Vitro , Resultado del Embarazo , Femenino , Humanos , Recién Nacido , Embarazo , Peso al Nacer , Medios de Cultivo/química , Técnicas de Cultivo de Embriones/métodos , Transferencia de Embrión/métodos , Fertilización In Vitro/métodos , Nacimiento Prematuro/epidemiología
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1019009

RESUMEN

Objective To investigate the effects of different culture conditions(RPMI-1640,DMEM and DMEM/F12 medium)on the passage of MPM cells isolated from the tissues of Malignant pleural mesothelioma(MPM),and to study the effects of CDKN2B on the proliferation,invasion and apoptosis of MPM cells.Methods MPM cells were isolated from MPM tissues and cultured in RPMI-1640,DMEM and DMEM/F12 medium,respectively.Cell proliferation was examined by CCK-8,and the nuclei and chromosomes were observed by Wright-Giemsa staining.Fluorescence intensities of Calretinin,CD141,CK5,EMA and WT-1 were conducted by immunofluorescence assay.The mRNA and protein expression of CDKN2B were detected by RT-qPCR and Western blot,respectively.Transwell was used to detect cell invasion and flow cytometry was used to detect cell apoptosis.Results The established MPM cells showed good viability when passaged to the 10th generation in RPMI-1640,DMEM and DMEM/F12 cultures,and the MPM markers Calretinin,CD141,CK5,EMA and WT-1 were all expressed in the cells.The viability of MPM cells in RPMI-1640 culture medium was relatively stable.CDKN2B was downregulated in MPM cells(P<0.05),and overexpression of CDKN2B significantly suppressed the proliferation(P<0.05),invasion(P<0.05)and epithelial interstitial transformation of MPM cells(P<0.01),and promoted the apoptosis(P<0.01).Conclusion The established MPM cells were stably passaged in RPMI-1640 culture medium,and CDKN2B may be a potential target for the diagnosis and treatment of MPM.

20.
Arch Microbiol ; 206(1): 20, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095693

RESUMEN

The composition of the vaginal microbiota is known to be influenced by various factors and to be associated with several disorders affecting women's health. Although metagenomics is currently a widely used method for studying the human microbiota, it has certain limitations, such as a lack of information on bacterial viability. It is therefore important to use culture-based methods such as culturomics. Here, we used 35 different culture conditions to comprehensively characterize the vaginal bacterial diversity of a single woman's flora. A total of 206 bacterial species, belonging to six phyla (for a little more than half to Firmicutes, followed mainly by Actinobacteria, Bacteroidetes, and Proteobacteria) and 45 families, and 2 fungal species were cultivated. While several species of lactobacilli have been isolated, a wide variety of other bacteria were also separated, including 65 never reported before in vaginal flora, including a new bacterial species, Porphyromonas vaginalis sp. nov. Extensive culture-based methods are essential to establish a comprehensive, evidence-based repertoire of bacterial viability. If combined with molecular methods, they can provide a much more thorough understanding of the vaginal microbiota and fulfil the unknown part of metagenomic studies.


Asunto(s)
Bacterias , Microbiota , Humanos , Femenino , Bacterias/genética , Microbiota/genética , Firmicutes/genética , Vagina/microbiología , Bacteroidetes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA