Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nat Prod Res ; : 1-7, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234765

RESUMEN

Cucurbitacins are triterpene bioactive constituents of natural products, particularly in the Cucurbitaceae plant family. The presence of cucurbitacins in seeds of the Cucurbita genus (pumpkin) has been only little studied. In this work, the content of cucurbitacins B, D, and E in seed oils from three cucurbits (Cucurbita moschata Duch, Cucurbita pepo Linn, and Cucurbita maxima Linn) was studied. An analytical method based on HPLC-DAD for the detection and quantification of these three cucurbitacins in seed oils was developed and validated according to ICH guidelines. The method showed good linearity, accuracy, and precision for the simultaneous quantification of cucurbitacins B, D, and E using C.moschata seed oil as a reference. When applied to C.pepo and C.maxima seed oils, cucurbitacin B and D were quantified but to a lesser extent. This is the first report of a simple, repeatable, and reproducible analytical tool to identify cucurbitacins in oilseeds from Cucurbita spp.

2.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273281

RESUMEN

Modern research has shown that Cucurbitacin B (Cu B) possesses various biological activities such as liver protection, anti-inflammatory, and anti-tumor effects. However, the majority of research has primarily concentrated on its hepatoprotective effects, with limited attention devoted to exploring its potential impact on the prostate. Our research indicates that Cu B effectively inhibits the proliferation of human prostate stromal cells (WPMY-1) and fibroblasts (HPRF), while triggering apoptosis in prostate cells. When treated with 100 nM Cu B, the apoptosis rates of WPMY-1 and HPRF cells reached 51.73 ± 5.38% and 26.83 ± 0.40%, respectively. In addition, the cell cycle assay showed that Cu B had a G2/M phase cycle arrest effect on WPMY-1 cells. Based on RNA-sequencing analysis, Cu B might inhibit prostate cell proliferation via the p53 signaling pathway. Subsequently, the related gene and protein expression levels were measured using quantitative real-time PCR (RT-qPCR), immunocytochemistry (ICC), and enzyme-linked immunosorbent assays (ELISA). Our results mirrored the regulation of tumor protein p53 (TP53), mouse double minute-2 (MDM2), cyclin D1 (CCND1), and thrombospondin 1 (THBS1) in Cu B-induced prostate cell apoptosis. Altogether, Cu B may inhibit prostate cell proliferation and correlate to the modulation of the p53/MDM2 signaling cascade.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas Proto-Oncogénicas c-mdm2 , Transducción de Señal , Triterpenos , Proteína p53 Supresora de Tumor , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Triterpenos/farmacología , Masculino , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/citología , Línea Celular
3.
Molecules ; 29(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275042

RESUMEN

The emergence of natural products has provided extremely valuable references for the treatment of various diseases. Cucurbitacin B, a tetracyclic triterpenoid compound isolated from cucurbitaceae and other plants, is the most abundant member of the cucurbitin family and exhibits a wide range of biological activities, including anti-inflammatory, anti-cancer, and even agricultural applications. Due to its high toxicity and narrow therapeutic window, structural modification and dosage form development are necessary to address these issues with cucurbitacin B. This paper reviews recent research progress in the pharmacological action, structural modification, and application of cucurbitacin B. This review aims to enhance understanding of advancements in this field and provide constructive suggestions for further research on cucurbitacin B.


Asunto(s)
Triterpenos , Triterpenos/química , Triterpenos/farmacología , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Animales , Cucurbitaceae/química , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología
4.
Eur J Pharmacol ; 978: 176805, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38950838

RESUMEN

Cucurbitacin B (CuB) is a compound found in plants like Cucurbitaceae that has shown promise in fighting cancer, particularly in lung cancer. However, the specific impact of CuB on ferroptosis and how it works in lung cancer cells has not been fully understood. Our research has discovered that CuB can effectively slow down the growth of non-small cell lung cancer (NSCLC) cells. Even in small amounts, it was able to inhibit the growth of various NSCLC cell lines. This inhibitory effect was reversed when ferroptosis inhibitors DFO, Lip-1 and Fer-1 were introduced. CuB was found to increase the levels of reactive oxygen species (ROS), lipid ROS, MDA, and ferrous ions within H358 lung cancer cells, leading to a decrease in GSH, mitochondrial membrane potential (MMP) and changes in ferroptosis-related proteins in a dose-dependent manner. These findings were also confirmed in A549 lung cancer cells. In A549 cells, different concentrations of CuB induced the accumulation of intracellular lipid ROS, ferrous ions and changes in ferroptosis-related indicators in a concentration-dependent manner. Meanwhile, the cytotoxic effect induced by CuB in A549 cells was counteracted by ferroptosis inhibitors DFO and Fer-1. Through network pharmacology, we identified potential targets related to ferroptosis in NSCLC cells treated with CuB, with STAT3 targets showing high scores. Further experiments using molecular docking and cell thermal shift assay (CETSA) revealed that CuB interacts with the STAT3 protein. Western blot and immunofluorescence staining demonstrated that CuB inhibits the phosphorylation of STAT3 (P-STAT3) in H358 cells. Silencing STAT3 enhanced CuB-induced accumulation of lipid ROS and iron ions, as well as the expression of ferroptosis-related proteins. On the other hand, overexpression of STAT3 reversed the effects of CuB-induced ferroptosis. The results indicate that CuB has the capability to suppress STAT3 activation, resulting in ferroptosis, and could be a promising treatment choice for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Especies Reactivas de Oxígeno , Factor de Transcripción STAT3 , Triterpenos , Humanos , Ferroptosis/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Triterpenos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
5.
Phytother Res ; 38(7): 3352-3369, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642047

RESUMEN

Osteoarthritis (OA) is a complicated joint disorder characterized by inflammation that causes joint destruction. Cucurbitacin B (CuB) is a naturally occurring triterpenoid compound derived from plants in the Cucurbitaceae family. The aim of this study is to investigate the potential role and mechanisms of CuB in a mouse model of OA. This study identified the key targets and potential pathways of CuB through network pharmacology analysis. In vivo and in vitro studies confirmed the potential mechanisms of CuB in OA. Through network pharmacology, 54 potential targets for CuB in treating OA were identified. The therapeutic potential of CuB is associated with the nod-like receptor pyrin domain 3 (NLRP3) inflammasome and pyroptosis. Molecular docking results indicate a strong binding affinity of CuB to nuclear factor erythroid 2-related factor 2 (Nrf2) and p65. In vitro experiments demonstrate that CuB effectively inhibits the expression of pro-inflammatory factors induced by interleukin-1ß (IL-1ß), including cyclooxygenase-2, inducible nitric oxide synthase, IL-1ß, and IL-18. CuB inhibits the degradation of type II collagen and aggrecan in the extracellular matrix (ECM), as well as the expression of matrix metalloproteinase-13 and a disintegrin and metalloproteinase with thrombospondin motifs-5. CuB protects cells by activating the Nrf2/hemeoxygenase-1 (HO-1) pathway and inhibiting nuclear factor-κB (NF-κB)/NLRP3 inflammasome-mediated pyroptosis. Moreover, in vivo experiments show that CuB can slow down cartilage degradation in an OA mouse model. CuB effectively prevents the progression of OA by inhibiting inflammation in chondrocytes and ECM degradation. This action is further mediated through the activation of the Nrf2/HO-1 pathway to inhibit NF-κB/NLRP3 inflammasome activation. Thus, CuB is a potential therapeutic agent for OA.


Asunto(s)
Hemo-Oxigenasa 1 , Inflamasomas , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Osteoartritis , Piroptosis , Triterpenos , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/tratamiento farmacológico , Ratones , Triterpenos/farmacología , Triterpenos/química , Piroptosis/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas de la Membrana/metabolismo
6.
Phytomedicine ; 129: 155548, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583347

RESUMEN

BACKGROUND: Oral leukoplakia (OLK), characterized by abnormal epithelial hyperplasia, is the most common precancerous oral mucosa lesion and is closely related to oxidative stress. Cucurbitacin B (CuB), a tetracyclic triterpenoid molecule derived from plants, has shown promising anti-proliferative and antioxidant effects in preclinical studies. However, whether CuB can play an antiproliferative role in OLK by regulating oxidative stress remains elusive. PURPOSE: To investigate the role of CuB in inhibiting the malignant progression of oral leukoplakia and to further explore its underlying mechanisms of action. METHODS: In vitro, the effect of CuB on the proliferation, migration, apoptosis, and cell cycle of OLK cells DOK was detected. The core genes and key pathways of OLK and CuB were analyzed in the transcriptome database, by using immunofluorescence, qRT-PCR, and Western blot to evaluate the expression levels of the ferroptosis markers ROS, GSH, MDA, Fe2+, and marker genes SLC7A11, GPX4, and FTH1. Immunohistochemistry of human tissue was performed to investigate the expression of the SLC7A11. In vivo, the model of OLK was established in C57BL/6 mice and the biosafety of CuB treatment for OLK was further evaluated. RESULTS: CuB substantially suppressed the proliferation of DOK cells. Bioinformatics analysis showed that the core targets of OLK crossing with CuB include SLC7A11 and that the essential pathways involve ROS and ferroptosis. In vitro experiments indicated that CuB might promote ferroptosis by down-regulating the expression of SLC7A11. We observed a gradual increase in SLC7A11 expression levels during the progression from normal oral mucosa to oral leukoplakia with varying degrees of epithelial dysplasia. In vivo experiments demonstrated that CuB inhibited the malignant progression of OLK by promoting ferroptosis in OLK mice and exhibited a certain level of biosafety. CONCLUSION: This study demonstrated for the first time that CuB could effectively inhibit the malignant progression of OLK by inducing ferroptosis via activating the SLC7A11/ mitochondrial oxidative stress pathway. These findings indicate that CuB could serve as the lead compound for the future development of anti-oral leukoplakia drugs.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Proliferación Celular , Ferroptosis , Leucoplasia Bucal , Mitocondrias , Estrés Oxidativo , Triterpenos , Ferroptosis/efectos de los fármacos , Leucoplasia Bucal/tratamiento farmacológico , Animales , Estrés Oxidativo/efectos de los fármacos , Triterpenos/farmacología , Humanos , Sistema de Transporte de Aminoácidos y+/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Masculino , Movimiento Celular/efectos de los fármacos
7.
Phytomedicine ; 126: 155177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412667

RESUMEN

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Asunto(s)
Ataxia Telangiectasia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/uso terapéutico , Puntos de Control del Ciclo Celular , Daño del ADN , Apoptosis , Línea Celular Tumoral , Proliferación Celular
8.
Phytother Res ; 38(5): 2215-2233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38411031

RESUMEN

Osteosarcoma is a common malignant bone tumour characterised by an aggressive metastatic potential. The tumour microenvironment, particularly the M2-polarised macrophages, is crucial for tumour progression. Cucurbitacin B (CuB), a triterpenoid derivative, is recognised for its anti-inflammatory and antitumour properties. This study investigates CuB and its effect on M2 macrophage differentiation and osteosarcoma progression, aiming to contribute to new treatment strategies. In vitro, THP-1 monocytes were stimulated with PMA, IL-13 and IL-4 to induce differentiation into M2 macrophages. Additionally, the influence of CuB on the proliferation, migration and invasion of osteosarcoma cells in the context of M2 macrophages was scrutinised. Crucial signalling pathways, especially the PI3K/AKT pathway, affected by CuB were identified and validated. In vivo, the osteosarcoma model was employed to gauge the effects of CuB on tumour weight, lung metastasis, angiogenesis, cell proliferation and M2 macrophage markers. The results showed that CuB inhibited M2 macrophage differentiation, leading to reduced proliferation, migration and invasion of osteosarcoma cells. CuB manifested an inhibitory effect on the PI3K/AKT pathway during the differentiation of M2 macrophages. In mouse models, CuB markedly reduced the tumour weight and the number of lung metastases. It also reduced the expression of angiogenesis and cell proliferation markers in tumour tissues, decreased the quantity of M2 macrophages and their associated markers and pathway proteins. In conclusion, CuB impedes osteosarcoma progression by inhibiting M2 macrophage differentiation via the PI3K/AKT pathway, presenting the potential for therapeutic advancements in osteosarcoma treatment.


Asunto(s)
Macrófagos , Osteosarcoma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Triterpenos , Animales , Humanos , Ratones , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Macrófagos/efectos de los fármacos , Ratones Endogámicos BALB C , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1 , Triterpenos/farmacología , Microambiente Tumoral/efectos de los fármacos
9.
Am J Chin Med ; 52(1): 275-289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38291583

RESUMEN

This study intends to explore the effects of Cucurbitacin B (CuB) and KIF20A on esophageal carcinoma (ESCA). Data were downloaded from the Cancer Genome Atlas (TCGA) database. The expression properties of KIF20A have been confirmed by GEPIA and ualcan from TCGA. The expression of KIF20A was determined using western blotting in ECA109 and KYSE150 cells after transfection with KIF20A, KIF20A siRNA, or numerical control siRNA (si-NC). Then, different concentrations of CuB were used to treat ECA109 and KYSE150 cells. CCK-8 and colony formation assays were used to measure cell viability, and a Transwell assay was utilized to assess cell migration and invasion ability. N-cadherin, E-cadherin, snail, p-Janus kinase 2 (JAK2), JAK2, p-signal transducer and activator of transcription 3 (STAT3), and STAT3 expression levels were evaluated using western blot. KIF20A was higher expressed in ESCA than in normal cells, and its overexpression was associated with squamous cell carcinoma, TNM stage, and lymph nodal metastasis of ESCA patients. In ECA109 and KYSE150 cells, increased KIF20A facilitated cell proliferation, migration, and invasion, whereas the knockdown of KIF20A can reverse these effects with N-cadherin. Snail expression diminished and E-cadherin increased. Similarly, CuB treatment could inhibit cell proliferation, migration, and invasion concentration dependently. Furthermore, KIF20A accelerated the expression of p-JAK2 and p-STAT3, while the application of CuB inhibited KIF20A expression and attenuated the activation of the JAK/STAT3 pathway. These findings revealed that CuB could inhibit the growth, migration, and invasion of ESCA through downregulating the KIF20A/JAK/STAT3 signaling pathway, and CuB could serve as an essential medicine for therapeutic intervention.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Triterpenos , Humanos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Transducción de Señal/genética , Carcinoma de Células Escamosas/genética , Proliferación Celular/genética , Movimiento Celular/genética , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Cadherinas/genética , Cadherinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , Cinesinas/metabolismo , Cinesinas/farmacología
10.
J Biomol Struct Dyn ; 42(5): 2643-2652, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37129211

RESUMEN

Cancer metastasis, a highly complex process wherein cancer cells move from the primary site to other sites in the body, is a major hurdle in its therapeutics. A large array of synthetic chemotherapeutic molecules used for the treatment of metastatic cancers, besides being extremely expensive and unaffordable, are known to cause severe adverse effects leading to poor quality of life (QOL) of the patients. In this premise, natural compounds (considered safe, easily available and economic) that possess the potential to inhibit migration of cancer cells are deemed useful and hence are on demand. Cucurbitacin-B (19-(10→9ß)-abeo-10-lanost-5-ene triterpene, called Cuc-B) is a steroid mostly found in plants of Cucurbitaceae family. It has been shown to possess anticancer activity although the molecular mechanism remains poorly defined. We present evidence that Cuc-B has the ability to interact with mortalin and HDM2 proteins that are enriched in cancer cells, suppress wild type p53 function and promote cancer cell migration. Computational analyses showed that Cuc-B interacts with mortalin similar to MKT077 and Withanone, both have been shown to reactivate p53 function and inhibit cell migration. Furthermore, Cuc-B interacted with HDM2 similar to Y30, a well-known inhibitor of HDM2. Experimental cell and molecular analyses demonstrated the downregulation of several proteins, critically involved in cell migration in Cuc-B (low non-toxic doses)-treated cancer cells and exhibited inhibition of cell migration. The data suggested that Cuc-B is a potential natural drug that warrants further mechanistic and clinical studies for its use in the management of metastatic cancers.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Neoplasias , Triterpenos , Humanos , Cucurbitacinas/farmacología , Calidad de Vida , Proteína p53 Supresora de Tumor , Neoplasias/tratamiento farmacológico , Triterpenos/farmacología , Movimiento Celular
11.
China Pharmacy ; (12): 1108-1112, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017145

RESUMEN

OBJECTIVE To investigate the preventive effect of cucurbitacin B (CB) on sepsis-induced acute lung injury (ALI) and its mechanism. METHODS The mice were divided into control group, model group, dexamethasone group (positive control, 2 mg/kg), CB low-dose and high-dose groups (25, 50 mg/kg). Each group was given relevant medicine intraperitoneally, once a day, for 3 consecutive days. Twenty-four hours after the last administration, those groups were given lipopolysaccharide (10 mg/kg) intraperitoneally to establish sepsis-induced ALI model (finally, 8 mice per group were included in the experiment), except for control group. Twenty-four hours after medication, blood routine indicators (total white blood cell count, neutrophils count, lymphocytes count), lung function indicators (total lung resistance, pulmonary outflow resistance, lung dynamic compliance, peak expiratory flow rate, and maximum ventilation volume), dry wet ratio of lung tissue were measured in each group. The lung tissue level of myeloperoxidase (MPO), and the serum levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), IL-6, superoxide dismutase (SOD) and malondialdehyde (MDA) were all detected. The pathological changes of lung tissue were observed; immunohistochemistry was used to detect the positive expression of phosphorylation signal transducer and activator of transcription 3 (p-STAT3) in the lung tissue. Western blot assay was used to detect the expressions of proteins related to IL-6/JAK2/ STAT3 signaling pathway in the lung tissue. RESULTS Compared with control group, total pulmonary resistance, pulmonary flow resistance, dry wet ratio of lung tissue, the total white blood cell count, neutrophils count, lymphocytes count of whole blood, the lung tissue level of MPO and serum levels of MDA, IL-6, IL-1β and TNF-α, the p-STAT3 protein optical density value, the protein expressions of IL-6 and IL-6 receptor, and the phosphorylation levels of JAK2 and STAT3 protein were increased significantly in the model group (P<0.01), while lung dynamic compliance, peak expiratory flow rate, maximum ventilation volume and serum level of SOD were decreased significantly (P<0.05 or P<0.01). Pulmonary tissue showed alveolar collapse and infiltration of inflammatory cells. Compared with the model group, the above indexes of mice were reversed significantly in dexamethasone group and CB groups (P<0.05 or P<0.01), the pathological damage of lung tissue was reduced. CONCLUSIONS CB can prevent sepsis-induced ALI by inhibiting the activity of Δ 基金项目遵义市科技计划项目(No.202252) IL-6/JAK2/STAT3 signaling pathway and relieving *第一作者主治医师。研究方向:重症医学。E-mail:fjuanxui@ 163.com inflammatory reactions. # 通信作者 主任医师。研究方向:儿童呼吸系统疾病诊断与治

12.
J Ethnopharmacol ; 322: 117584, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104874

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestatic liver injury (CLI) is a pathologic process with the impairment of liver and bile secretion and excretion, resulting in an excessive accumulation of bile acids within the liver, which leads to damage to both bile ducts and hepatocytes. This process is often accompanied by inflammation. Cucumis melo L is a folk traditional herb for the treatment of cholestasis. Cucurbitacin B (CuB), an important active ingredient in Cucumis melo L, has significant anti-inflamamatory effects and plays an important role in diseases such as neuroinflammation, skin inflammation, and chronic hepatitis. Though numerous studies have confirmed the significant therapeutic effect of CuB on liver diseases, the impact of CuB on CLI remains uncertain. Consequently, the objective of this investigation is to elucidate the therapeutic properties and potential molecular mechanisms underlying the effects of CuB on CLI. AIM OF THE STUDY: The aim of this paper was to investigate the potential protective mechanism of CuB against CLI. METHODS: First, the corresponding targets of CuB were obtained through the SwissTargetPrediction and SuperPre online platforms. Second, the DisGeNET database, GeneCards database, and OMIM database were utilized to screen therapeutic targets for CLI. Then, protein-protein interaction (PPI) was determined using the STRING 11.5 data platform. Next, the OmicShare platform was employed for the purpose of visualizing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The molecular docking technique was then utilized to evaluate the binding affinity existing between potential targets and CuB. Subsequently, the impacts of CuB on the LO2 cell injury model induced by Lithocholic acid (LCA) and the CLI model induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) were determined by evaluating inflammation in both in vivo and in vitro settings. The potential molecular mechanism was explored by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) techniques. RESULTS: A total of 122 CuB targets were collected and high affinity targets were identified through the PPI network, namely TLR4, STAT3, HIF1A, and NFKB1. GO and KEGG analyses indicated that the treatment of CLI with CuB chiefly involved the inflammatory pathway. In vitro study results showed that CuB alleviated LCA-induced LO2 cell damage. Meanwhile, CuB reduced elevated AST and ALT levels and the release of inflammatory factors in LO2 cells induced by LCA. In vivo study results showed that CuB could alleviate DDC-induced pathological changes in mouse liver, inhibit the activity of serum transaminase, and suppress the liver and systemic inflammatory reaction of mice. Mechanically, CuB downregulated the IL-6, STAT3, and HIF-1α expression and inhibited STAT3 phosphorylation. CONCLUSION: By combining network pharmacology with in vivo and in vitro experiments, the results of this study suggested that CuB prevented the inflammatory response by inhibiting the IL-6/STAT3/HIF-1α signaling pathway, thereby demonstrating potential protective and therapeutic effects on CLI. These results establish a scientific foundation for the exploration and utilization of natural medicines for CLI.


Asunto(s)
Colestasis , Cucumis melo , Medicamentos Herbarios Chinos , Triterpenos , Animales , Ratones , Interleucina-6 , Simulación del Acoplamiento Molecular , Farmacología en Red , Hígado , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Inflamación
13.
Front Pharmacol ; 14: 1286507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841925

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2023.1206981.].

14.
Plant Foods Hum Nutr ; 78(4): 630-642, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37698772

RESUMEN

Cucumis callosus (Kachri) is an under-exploited fruit of the Cucurbitaceae family, distributed majorly in the arid regions of India in the states of Haryana, Rajasthan, and Gujarat. The fruit is traditionally used by the native people at a small scale by home-level processing. It is a perennial herb that has been shown to possess therapeutic potential in certain disorders. In several studies, the antioxidant, anti-hyperlipidaemic, anti-diabetic, anti-cancerous, anti-microbial, and cardioprotective properties of Kachri have been reported. The fruit has a good nutritional value in terms of high percentages of protein, carbohydrates, essential fatty acids, phenols, and various phytochemicals. Also, gamma radiation treatment has been used on this crop to reduce total bacterial counts (TBC), ensuring safety from pathogens during the storage period of the fruit and its products. These facts lay down a foundation for the development of functional food formulations and nutraceuticals of medicinal value from this functionally rich crop. Processing of traditionally valuable arid region foods into functional foods and products can potentially increase the livelihood and nutritional security of people globally. Therefore, this review focuses on the therapeutic and pharmacological potentials of the Kachri fruit in the management of non-communicable diseases (NCDs) namely, diabetes, cancer, and hyperlipidemia. Graphical abstract of the review.


Asunto(s)
Cucumis , Enfermedades no Transmisibles , Humanos , Enfermedades no Transmisibles/tratamiento farmacológico , India , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/análisis
15.
Exp Ther Med ; 26(4): 484, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37753296

RESUMEN

Cucurbitacin B (CuB) is a member of the cucurbitacin family, which has shown potent anticancer pharmacological activity. Prolonged or severe endoplasmic reticulum stress (ERS) induces apoptosis; therefore, the present study investigated whether CuB may activate the ERS pathway to induce apoptosis. HT-29 and SW620 colorectal cancer (CRC) cells were treated with a range of concentrations of CuB for 48 h, and the viability and proliferation of cells were determined using Cell Counting Kit 8 (CCK8) and colony formation assays. Subsequently, the appropriate CuB concentration (5 µM) was selected for treatment of CRC cells for 48 h. Western blot analysis was used to measure the expression levels of ERS-related proteins, flow cytometry was used to evaluate apoptosis, the dichlorodihydrofluorescein diacetate fluorescent probe was used to detect reactive oxygen species (ROS) production, and the relationship between ROS and ERS was determined by western blot analysis. Furthermore, flow cytometry was used to evaluate apoptosis after treatment with the ERS inhibitor 4-phenylbutyric acid, the ROS inhibitor N-acetylcysteine and following knockdown of CHOP expression. In addition, western blot analysis was performed to measure Bax and Bcl2 protein expression levels, and a CCK8 assay was performed to evaluate the viability of cells following knockdown of CHOP. Notably, CuB treatment increased apoptosis and inhibited cell proliferation in CRC cell lines, and these effects were mediated by ROS and ROS-regulated activation of the PERK and XBP1 ERS pathways. In conclusion, CuB may induce apoptosis in HT-29 and SW620 CRC cells via ROS and ERS.

16.
Mol Divers ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615817

RESUMEN

Oral squamous cell carcinoma (OSCC) is a malignant tumor with a high incidence and poor prognosis. Cucurbitacin B (CuB) is a tetracyclic triterpenoid small-molecule compound extracted from plants, such as Cucurbitaceae and Brassicaceae, which has powerful anticancer effects. However, the effect and mechanism of CuB on OSCC remain unclear. Within the framework of the current study, network pharmacology was used to analyze the relationship between CuB and OSCC. The network pharmacology analysis showed that CuB and OSCC share 134 common targets; among them, PIK3R1, SRC, STAT3, AKT1, and MAPK1 are the key targets. The molecular docking analysis showed that CuB binds five target proteins. The results of the enrichment analysis showed that CuB exerted effects on OSCC through various pathways; of these pathways, PI3K-AKT was the most important pathway. The results of the in vitro cell experiments showed that CuB could inhibit the proliferation and migration of SCC25 and CAL27 cells, block the cell cycle in the G2 phase, induce cell apoptosis, and regulate the protein expression of the PI3K-AKT signaling pathway. The results of the in vivo animal experiments showed that CuB could inhibit 4NQO-induced oral cancer in mice. Therefore, network pharmacology, molecular docking, cell experiments, and animal experiments showed that CuB could play a role in OSCC by regulating multiple targets and pathways.

17.
Int J Neuropsychopharmacol ; 26(10): 680-691, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37603290

RESUMEN

BACKGROUND: Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS: The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS: It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS: Cucurbitacin B has the potential to be a novel antidepressant candidate.


Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Depresión , Animales , Humanos , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
18.
Front Pharmacol ; 14: 1206981, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448964

RESUMEN

Introduction: Among numerous triterpenoids of the Cucurbitaceae family, Cucurbitacin-B (Cur-B) is being explored for its pharmacological attributes. Reports from previous studies have explicitly shown that Cur-B possesses substantial anticancer effects. The present report focuses on exploring the anticancer attributes of Cur-B against androgen-dependent PCa LNCaP cells. Methods: LNCaP cells were exposed to commercially available purified Cur-B at varying concentrations that were selected as 5, 10, 15, 20, and 25 µM for some time of 24 h to perform various experimental studies. Results: Cytotoxicity evaluation revealed that Cur-B impeded the LNCaP cell's viability at 5 µM (p <0.05) which increased considerably at a concentration of 25 µM (p <0.001). Cur-B was also efficacious in inducing the changes within nu-clear morphology followed by a concomitant increase in the activities of key caspases including caspase-3, -8, and -9 intriguingly in a dose-dependent trend. Cur-B treatment not only resulted in the augmentation of intracellular ROS levels within LNCaP cells at 5 µM (p <0.05) but also in-creased significantly at 25 µM concentration (p <0.001). Elevation in the ROS levels was also found to be correlated with dissipated mitochondrial membrane potential (ΔΨm) which culminated in the onset of significant apoptosis at 25 µM concentration (p <0.001). Cur-B exposure also resulted in the downregulation of cyclin D1, cyclin-dependent kinase 4 (CDK4) followed by amplified levels of p21Cip1 mRNA. Importantly, exposure of Cur-B competently reduced the expression of the Notch signaling cascade which may be the plausible cause behind Cur-B-instigated apoptotic cell death and cell cycle arrest in LNCaP cells. Discussion: These observations thus, explicitly indicated that Cur-B could be plausibly further explored as potent therapeutics against androgen-dependent PCa.

19.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1095-1103, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36642716

RESUMEN

Cucurbitacin B (CuB) is a class of tetracyclic triterpenoids isolated from Cucurbitaceae with a wide range of anti-inflammatory and anti-tumor activities, mainly used in hepatitis and hepatocellular carcinoma, while there is relatively little research and application of this drug for lung cancer. In this study, CuB was administered on A549/DDP cells to observe how it affected the cells and their mechanism of action. CuB demonstrated good anti-tumor activity against A549/DDP cells in a dose-dependent manner and caused changes in the hedgehog (Hh) pathway. The results showed that CuB greatly inhibits the proliferation and the invasion of A549/DDP cells, and promoted apoptosis of A549/DDP cells. Meanwhile, it changed the expression of p53-related genes at the RNA and protein level. In conclusion, this experiment provides a theoretical basis for new applications of CuB and new thoughts on the mechanism of its anti-tumor activity, and provides a direction for deep research.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Triterpenos , Humanos , Cisplatino/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Línea Celular Tumoral , Proteínas Hedgehog , Neoplasias Pulmonares/tratamiento farmacológico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Apoptosis , Proliferación Celular
20.
Pharmacol Res ; 187: 106587, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460279

RESUMEN

Cucurbitacin B (CuB, C32H46O8), the most abundant and active member of cucurbitacins, which are highly oxidized tetracyclic triterpenoids. Cucurbitacins are widely distributed in a variety of plants and mainly isolated from plants in the Cucurbitaceae family. CuB is mostly obtained from the pedicel of Cucumis melo L. Modern pharmacological studies have confirmed that CuB has a broad range of pharmacological activities, with significant therapeutic effects on a variety of diseases including inflammatory diseases, neurodegenerative diseases, diabetes mellitus, and cancers. In this study the PubMed, Web of Science, Science Direct, and China National Knowledge Infrastructure (CNKI) databases were searched from 1986 to 2022. After inclusion and exclusion criteria were applied, 98 out of 2484 articles were selected for a systematic review to comprehensively summarize the pharmacological activity, toxicity, and pharmacokinetic properties of CuB. The results showed that CuB exhibits potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective, and anti-cancer activities mainly via regulating various signaling pathways, such as the Janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3), nuclear factor erythroid 2-related factor-2/antioxidant responsive element (Nrf2/ARE), nuclear factor (NF)-κB, AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, cancerous inhibitor of protein phosphatase-2A/protein phosphatase-2A (CIP2A/PP2A), Wnt, focal adhesion kinase (FAK), Notch, and Hippo-Yes-associated protein (YAP) pathways. Studies of its toxicity and pharmacokinetic properties showed that CuB has non-specific toxicity and low bioavailability. In addition, derivatives and clinical applications of CuB are discussed in this paper.


Asunto(s)
Cucurbitacinas , Triterpenos , Cucurbitacinas/farmacología , Cucurbitacinas/uso terapéutico , Proteína Fosfatasa 2/metabolismo , Antioxidantes , Fosfatidilinositol 3-Quinasas , Triterpenos/farmacología , FN-kappa B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA