Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9027, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641640

RESUMEN

Copper-doped ZnO nanoparticles with the formula Zn1-x(Cu)O, where x = 0.0, 0.03, 0.05, and 0.07 were produced using the co-precipitation process. Physical, chemical, and structural properties were properly examined. Powdered X-ray diffraction (P-XRD) patterns revealed the formation of hexagonal wurtzite crystal structure in all samples, through atomic substitutional incorporation in the Cu-doped ZnO lattice. The presence of Cu ions and their dissolution in the host ZnO crystal structure was supported by FT-IR spectra. HR-TEM images were used to assess the average size, morphology, and shape regularity of the synthesized samples. The form and homogeneity of the ZnO changed when Cu ions were substituted, as evidenced by FE-SEM/EDX analysis. The presence of copper signals in the Cu-doped samples indicates that the doping was successful. The decrease in zeta potential with an increased copper doping percentage designates that the nanoparticles (NPs) are more stable, which could be attributed to an increase in the ionic strength of the aqueous solution. The synthesized NPs were evaluated for their substantial in vitro antioxidant properties. In addition, the antimicrobial efficacy of the materials was tested against pathogenic microorganisms. Regarding the anti-diabetic activity, the 7Cu ZnO sample showed the highest inhibitory effect on the α-amylase enzyme. No variations were observed in the activities of the acetylcholinesterase enzyme (AChE) and proteinase enzymes with ZnO and samples doped with different concentrations of Cu. Therefore, further studies are recommended to reveal the in-vitro anti-diabetic activity of the studied doped samples. Finally, molecular docking provided valuable insights into the potential binding interactions of Cu-doped ZnO with α-amylase, FabH of E. coli, and Penicillin-binding proteins of S. aureus. These outcomes suggest that the prepared materials may have an inhibitory effect on enzymes and hold promise in the battle against microbial infections and diabetes.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Cobre/química , Escherichia coli , Staphylococcus aureus , Acetilcolinesterasa , Iones/farmacología , alfa-Amilasas
2.
BMC Chem ; 18(1): 32, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355555

RESUMEN

In this work, Fabrication, and characterization of Cu-doped ZnO thin films deposited on porous silicon (PSi) substrates have been reported using electrochemical deposition (ECD) technique. The influence of Cu-doping concentrations on morphology, structure, and electrical characteristics of zinc oxide (ZnO) thin films were presented. X-ray diffraction analysis (XRD) has been used to characterize the lattice constants, average size, in-plane (along a-axis) and out of plane (along c-axis) strains for the Cu-ZnO crystals. The effects of Cu-doping concentration on crystal parameters were also investigated from the XRD analysis. The samples were used for UV-sensing applications. In addition, Cu-doped ZnO and pure ZnO metal-semiconductor-metal photodetector, with Cu as electrode contacts were successfully produced for ultraviolet (UV) detection. The I-V (current-voltage) characteristics were used to study the sensing enhancement. Finally, the UV photodetector based on Cu-doped ZnO films was successfully fabricated and shows a five times enhancement in the sensitivity to UV light compared to that of pure ZnO photodetector.

3.
Water Environ Res ; 95(12): e10956, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38115184

RESUMEN

1-D oxides Zn1-xCuxO and spherical composites Zn1-xCuxO/CuO were obtained by thermolysis of formate-glycolate complexes Zn1-xCux (HCOO)(OCH2CH2O)1/2 (0 ≤ x ≤ 0.15). The structural and property characteristics showed that Cu was introduced into the Zn site of the ZnO lattice to form the Zn0.95Cu0.05O solid solution. The concentration of copper in the precursors regulates the topological and structural features of the formation of Zn1-xCuxO oxides, which determine their sorption and photocatalytic properties. The materials were tested in As3+ photooxidation reaction under UV and visible radiation. It has been established that Cu+ is an effective dopant in the composition of 1-D oxide Zn1-xCuxO (0 ≤ x < 0.1). The presence of Cu2+ in the shell of Zn1-xCuxO/CuO composite reduces the photoactivity of the material. The maximum efficiency of arsenic extraction (up to 80% for Zn0.95Cu0.05O) was achieved from dilute arsenic-containing solutions (3.8 mg/L As) and an adsorbent concentration of 0.8 g/L for 24 h. In saturated solutions (380 mg/L As) this value is reduced by a factor of 100. According to XPS data, the primary process is As3+ sorption on the catalyst surface followed by its oxidation to As5+. Using the EPR method it was found that singly charged oxygen vacancies V O + $$ {V}_O^{+} $$ associated with Cu in Zn1-xCuxO are directly involved in the photostimulated oxidation of As3+. PRACTITIONER POINTS: Two types of Zn1-x Cux O photocatalysts were obtained by thermolysis of the Zn1-x Сux (HCOO)(OCH2 CH2 O)1/2 complex (0 ≤ x ≤ 0.15) in air. Sorption of arsenic from dilute solutions reaches 80% on 1-D oxide Zn0.95 Cu0.05 O. Sorption of As3+ on the catalyst surface is at primary process followed by its oxidation to As5+ . Removal of As3+ from alkaline solutions occurs due to successful combination of sorption and photocatalytic properties of the 1-D oxides Zn1-x Cux O.


Asunto(s)
Arsénico , Óxido de Zinc , Óxido de Zinc/química , Cobre/química , Óxidos/química , Luz , Oxígeno
4.
Environ Sci Pollut Res Int ; 30(42): 95860-95874, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37561304

RESUMEN

Dilute magnetic semiconductor Zn1-xCuxO (x = 0, 1.5, 3.0, and 4.5%) nanorods were prepared by hydrothermal method. The impact of dopant concentration on the physical properties was investigated along with the anti-bacterial and photocatalytic activities. Synthesis of ZnO nanorods was confirmed by the characteristic band at 380 nm in UV-Visible spectra of the synthesized samples. A red shift in absorbance spectra was observed from 380 to 465 nm with an increase in dopant concentration. The hexagonal wurtzite geometry and rod-like morphology of Cu-doped ZnO nanorods having an average size of 29 nm were confirmed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), respectively. An increase in the crystallinity of the material was observed with an increase in the dopant (Cu) ratio without any alteration in geometry. EDX analysis was used to confirm the purity of samples. FTIR spectra were recorded to explore the functional group present in samples. The hysteresis loop drawn by a vibrating-sample magnetometer (VSM) was utilized to analyze the ferromagnetic behavior. As-synthesized pure and Cu-ZnO nanorods were evaluated for their photocatalytic behavior for the photodegradation of methyl orange (MO) dye. Zn1 - xCuxO with x = 4.5%, pH 3, and catalyst dosage of 0.5 g has shown the maximum efficiency. Results elucidated > 81% degradation of MO dye with a rate constant (k) value of - 1.930 × 10-2 min-1 in just 90 min of exposure to a visible light source. ZnO nanorods have also exhibited anti-bacterial potential against gram-positive and gram-negative strains of bacteria. However, smaller size nanorods were found more effective to suppress the growth of gram-negative bacteria. A slight decrease (11%) in catalytic potential was observed in the 5th cycle during recycling and reuse experiments.


Asunto(s)
Nanotubos , Óxido de Zinc , Luz , Fotólisis , Bacterias
5.
Materials (Basel) ; 15(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363250

RESUMEN

The paper presents a successful, simple method for the preparation and deposition of new hybrid Cu-doped ZnO/microcellulose coatings on textile fibers, directly from cellulose aqueous solution. The morphological, compositional, and structural properties of the obtained materials were investigated using different characterization methods, such as SEM-EDX, XRD, Raman and FTIR, as well as BET surface area measurements. The successful doping of ZnO NPs with Cu was confirmed by the EDX and Raman analysis. As a result of Cu doping, the hybrid NPs experienced a phase change from ZnO to (Zn0.9Cu0.1)O, as shown by the XRD results. All the hybrid NPs exhibited a high degree of crystallinity, as revealed by the very sharp reflections in XRD patterns and suggested also by the Raman results. The evaluation of the very low copper-doping (0.1-1 at.%) effect has shown different behavior trends of the hybrid coatings compared with the starting oxide NPs, for MB and MO photodegradation. Continuous increases up to 92% and 60% for MB and MO degradation, respectively, were obtained at maximum 1 at.%-Cu doping coatings. Strong antibacterial activity against S. aureus and E. coli were observed.

6.
Colloids Surf B Biointerfaces ; 218: 112729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35907356

RESUMEN

This study aimed to develop a novel antibacterial and superabsorbent dressing by introducing the Cu-doped ZnO nanoparticles into the carboxymethyl cellulose/gelatin glutaraldehyde-crosslinked composite sponge that is fabricated by lyophilization method. Undoped and Cu-doped ZnO (Zn1-xCuxO, x = 0.03 and 0.05) nanoparticles were synthesized through the stabilizing agent-used precipitation process and characterized by XRD, FESEM, FTIR, and ICP-OES techniques. The XRD evaluation determined that the concentration of copper in ZnO is limited to below 5%. Additionally, The ICP-OES analysis confirmed the effect of the doping process on the ZnO crystalline structure by releasing more zinc and copper ions from Cu-doped ZnO, which resulted to improve antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial strains. The effect of ZnO nanoparticles on the physical and mechanical performance of the optimized composite sponge indicated that the incorporation of 3 wt% ZnO nanoparticles produces a well-interconnected porous structure (~156 µm) with high water absorption (~3089%) and proper elongation (~49%) in a wet medium. The incorporation of Cu-doped ZnO nanoparticles enhanced antibacterial potential of the composite sponge. Meanwhile, all sponge groups are safe for viability, proliferation and adhesion of human dermal fibroblast cells. Overall, the obtained data has proved the potential of carboxymethyl cellulose/gelatin/Cu-doped ZnO dressing as a promising candidate for managing infected wounds.


Asunto(s)
Óxido de Zinc , Antibacterianos/química , Antibacterianos/farmacología , Carboximetilcelulosa de Sodio/farmacología , Cobre/química , Cobre/farmacología , Escherichia coli , Excipientes/farmacología , Gelatina/farmacología , Glutaral , Humanos , Agua/farmacología , Zinc/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología
7.
Proc Inst Mech Eng H ; 236(8): 1057-1069, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35592933

RESUMEN

Some studies have been reported in the recent past on smart sensors for non-enzymatic glucose sensing applications. Nevertheless, little has been reported on the in-house development of low-cost 3D printed smart biomedical sensors with tunable sensitivity. This study reports investigations on the in-house, low-cost fabrication of polyvinyl difluoride (PVDF) matrix-based 3D printed tunable non-enzymatic glucose sensors. For fabrication of smart sensors, Cu (4%) doped ZnO nanoparticles have been reinforced (in different weight proportions (wt%) in PVDF matrix through melt processing. The results suggest that 4% reinforcement (of 4% Cu doped-ZnO), processed at 190°C, 40 rpm screw speed on twin screw extrusion (TSE) followed by post heat treatment (HT) at 60°C are the best settings for fabrication of feedstock filaments (for bio-sensor 3D printing). Finally, a PVDF-based sensor to support bioreceptor and transducer requirements has been successfully prepared (with 4D properties (i.e. one-way programing feature), optical, morphological, bond strength, piezoelectric and mechanical characteristics). The 3D printed electro-active sensor, (of selected composition) resulted in acceptable mechanical, piezoelectric, and dielectric properties (modulus of toughness (MoT) 1.46 MPa, Young's modulus (YM) 1221.7 MPa, piezoelectric coefficient 19.3pC/N and dielectric constant 6.5). The results have been supported by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), current-voltage-resistance (I-V-R), and Fourier transformed infrared (FTIR) analysis.


Asunto(s)
Óxido de Zinc , Glucosa , Microscopía Electrónica de Rastreo , Impresión Tridimensional , Óxido de Zinc/química
8.
J Environ Manage ; 294: 112962, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102467

RESUMEN

In this study, bentazon herbicide was degraded photocatalytically by copper doped zinc oxide nanorods fabricated by using a facile co-precipitation method. The crystal structure, morphology, surface composition, functional groups on the surface and valence state of the nanorods were investigated by XRD, SEM-EDX, FTIR, and XPS material characterization techniques. Environmental parameters including solution pH, catalyst dose, bentazon concentration, purging gases, H2O2 content, organic compound type and reusability affecting the rate of photocatalytic degradation of bentazon were evaluated. Under the optimal conditions, [Bentazon]0 = 20 mg L-1, Cu-ZnO loading = 0.5 g L-1, H2O2 = 2 mM, pH = 7 and in the presence of oxygen gas, 100% of the herbicide was removed within 60 min. By raising bentazon concentration (10-50 mg L-1), kobs decreased to values between 0.14 and 0.006 min-1 and the calculated electrical energy per order (EEo) increased from 38.16 to 727.27 (kWh m-3), respectively. The degradation removal of the herbicide using the UV/Cu-ZnO method (98.28%) was higher than that of the UV/ZnO method (32.14%) process. Interestingly, the photocatalytic performances in the first and fifth reuse cycles during catalyst recyclability tests were found to be similar. Generally, the efficacy of the method in the decomposition of bentazon in drinking water (78.95%) and actual sewage (46.77%) declined because of the presence of other anions due to their role as a scavenger of photogenerated reactive species. Intermediate products in the photocatalytic degradation of bentazon identified by gas chromatography/mass spectrometry (GC/MS) analysis were 2-amino-N-isopropyl-benzamide, 2-amino-benzoic acid, N-isopropyl-2-nitro-benzamide, and acids such as pentenedioic acid, oxalic acid and propenoic acid. Furthermore, the main mechanism for the photocatalytic removal of bentazon was determined to be via attack by hydroxyl radicals (•OH). The results of toxicity in the photocatalytic removal of bentazon by D. magna showed LC50 and toxicity unit (TU) 48 h equal to 46.10 and 9.56 vol percent.


Asunto(s)
Nanotubos , Óxido de Zinc , Benzotiadiazinas , Catálisis , Cobre , Peróxido de Hidrógeno
9.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796739

RESUMEN

To explore the origin of magnetism, the effect of light Cu-doping on ferromagnetic and photoluminescence properties of ZnO nanocrystals was investigated. These Cu-doped ZnO nanocrystals were prepared using a facile solution method. The Cu2+ and Cu+ ions were incorporated into Zn sites, as revealed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). At the Cu concentration of 0.25 at.%, the saturated magnetization reached the maximum and then decreased with increasing Cu concentration. With increasing Cu concentration, the photoluminescence (PL) spectroscopy indicated the distribution of VO+ and VO++ vacancies nearly unchanged. These results indicate that Cu ions can enhance the long-range ferromagnetic ordering at an ultralow concentration, but antiferromagnetic "Cu+-Vo-Cu2+" couples may also be generated, even at a very low Cu-doping concentration.

10.
Mater Sci Eng C Mater Biol Appl ; 106: 110177, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31753405

RESUMEN

ZnO nanoparticles (NPs) have variety of applications in different fields due to its size, structure, as well as physical and chemical properties. One of its prominent characteristics is its antibacterial behavior. Nonlinear Dynamical Theory (NLD) has a vast scope in the field of material science, especially when subtle correlations are searched for to extract hidden information. Since nano-ZnO materials may be used in inhibiting pathogens, its nonlinear features can be quantified and calibrated with the help of NLD tools. Multi-fractal Analysis (MFA) is an important diagnostic tool of NLD for not only analyzing nonlinear signal or images, but also predicting any spurious events likely to occur in the system under study. Thus, the analysis of the surface texture of the ZnO nano particles formed, using the TEM images and relate it with the variations of the XRD signal using NLD tools, is our first attempt reported here. Further, tools of MFA are used, for the first time, to see if there exists any correlation between the texture of the nano particles formed and the Zone of Inhibition (ZoI) we obtain as an output after allowing certain pathogens inhibit in the presence of the same nano particles. Analysis of TEM images guide us to predict the texture and structure of crystallites of ZnO:Cu samples which are responsible for overall behavior of inhibiting pathogens. In this paper, MFA of ZoI images, TEM images, and signal of four different Cu-doped ZnO nanoparticles are carried out and their outcomes are calibrated for estimating the size and pattern of unknown NPs synthesized under similar physical and chemical condition. Moreover, that MFA can be used reliably to predict spurious or abnormal surface structure or bacterial inhibition is also established.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Nanopartículas/química , Óxido de Zinc/química , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura
11.
Environ Technol ; 41(28): 3745-3755, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31084529

RESUMEN

A new synthetisis method of Cu-doped ZnO nanoparticles is presented in this work, this novel approach allow one to produce Zinc oxide nanocristal owing to a modified Polyol process that makes use of triethyleneglycol (TREG) as a solvent. The structure and morphology of the nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption study, UV-Vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy and Raman spectroscopy. The lightly doped Zn1-xCuxO photocatalysts consisted in a novel nanorods structure of Zn0.9990Cu0.0010O nanoparticles. Taking the photocatalytic degradation of diuron under solar light as liquid phase test reaction, the lightly doped Zn0.9990Cu0.0010O nanorods photocatalysts showed strongly enhanced photocatalytic activity when compared to the bare ZnO counterpart. The apparent rate constant value of Zn0.9990Cu0.0010O was 22 times higher than that of pure ZnO. In order to study the environmental risk of Cu-ZnO, clams Ruditapes decussatus were exposed to Cu-ZnOC1 = 0.5 mg/L, Cu-ZnOC2 = 1 mg/L and Cu-ZnO C3 = 5 mg/L. Catalase (CAT) activities, malondialdehyde (MDA) content and acetylcholinesterase (AChE) activity were determined in gills and digestive gland of treated and untreated clams. Thus, no significant effects were detected in the gills of exposed clams after 7 days compared to control. Thus, MDA level and CAT activity showed significant differences in digestive glands of groups treated by the highest concentration of Cu-ZnO NPs compared to the control. No adverse effects on AChE activity was detected after Cu-ZnO NPs exposure. These results demonstrated that, although Cu-ZnO NPs is not acutely toxic to Ruditapes decussatus, it does exert oxidative stress on clams. These results are encouraging for the Cu-ZnO NPs use in variety of applications due to its high photocatalytic and low environmental toxicity.


Asunto(s)
Nanopartículas del Metal , Nanotubos , Óxido de Zinc , Animales , Catálisis , Branquias , Nanopartículas del Metal/toxicidad , Difracción de Rayos X , Óxido de Zinc/toxicidad
12.
Materials (Basel) ; 12(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626170

RESUMEN

The band structure, the density of states and optical absorption properties of Cu-doped ZnO were studied by the first-principles generalized gradient approximation plane-wave pseudopotential method based on density functional theory. For the Zn1-xCuxO (x = 0, x = 0.0278, x = 0.0417) original structure, geometric optimization and energy calculations were performed and compared with experimental results. With increasing Cu concentration, the band gap of the Zn1-xCuxO decreased due to the shift of the conduction band. Since the impurity level was introduced after Cu doping, the conduction band was moved downwards. Additionally, it was shown that the insertion of a Cu atom leads to a red shift of the optical absorption edge, which was consistent with the experimental results.

13.
Chem Biol Interact ; 297: 141-154, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30419219

RESUMEN

The present study reports the regulation of cytotoxicity of Cu doped ZnO nanoparticles in macrophages (RAW 264.7) due to altered physiochemical properties changes like electrical properties by controlled doping of Cu in ZnO. Cu-doped ZnO nanoparticles were prepared by High Energy Ball Milling technique (HEBM) and formed single phase Zn1-xCuxO (x = 0.0, 0.01, 0.02, 0.03) were called as pure ZnO, Cu1%, 2%, 3% respectively. Hexagonal wurtzite structure with size range of 22-26 nm was verified. FE-SEM with EDX analysis indicated the Cu doping effect on the surface morphology of ZnO. Zeta potential of Zn1-xCuxO was found to be elevated with increase in doping percentage of Cu (-36.6 mV to +18.2 mV). Dielectric constant was found to be decreased with increasing doping percentage. Increase in doping percentage enhanced cytotoxicity of Zn1-xCuxO in macrophages with LC50 of 62 µg/ml, 51 µg/ml, 40 µg/ml, 32 µg/ml. Granularity change of macrophages suggested doping influenced cellular uptake as consequence of zeta potential and dielectric properties changes. 3% Cu doped ZnO shown a higher ROS signal and apoptosis than 2% and 1% Cu doping with exhibition of ROS scavenging nature leading to apoptosis of prepared Cu doped ZnO nanoparticles. Our findings revealed mechanism of cytotoxicity of Zn1-xCuxO as a consequence of alteration in electric properties eliciting ROS scavenging leading to higher apoptosis with increasing doping percentage of Cu in ZnO.


Asunto(s)
Apoptosis/efectos de los fármacos , Cobre/química , Macrófagos/efectos de los fármacos , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Óxido de Zinc/toxicidad , Naranja de Acridina/química , Animales , Bromuros/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conductividad Eléctrica , Fluorescencia , Ratones , Nanotecnología , Tamaño de la Partícula , Células RAW 264.7 , Relación Estructura-Actividad , Propiedades de Superficie , Óxido de Zinc/síntesis química , Óxido de Zinc/química
14.
ACS Appl Mater Interfaces ; 8(25): 16379-85, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27258907

RESUMEN

Novel CuO nanoparticle-capped ZnO nanorods have been produced using a pulsed laser deposition (PLD) method. These nanorods are shown to grow by a CuO-nanoparticle-assisted vapor-solid-solid (V-S-S) mechanism. The photoluminescence (PL) accompanying ultraviolet illumination of these capped nanorod samples shows large variations upon exposure to trace quantities of H2S gas. The present data suggest that both the Cu-doped ZnO stem and the CuO capping nanoparticle contribute to optical H2S sensing with these CuO-ZnO nanorods. This study represents the first demonstration of PL-based H2S gas sensing, at room temperature, with sub-ppm sensitivity. It also opens the way to producing CuO-ZnO nanorods by a V-S-S mechanism using gas-phase methods other than PLD.

15.
Environ Sci Pollut Res Int ; 22(21): 16875-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26104905

RESUMEN

In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.


Asunto(s)
Cobre/química , Sustancias Húmicas/análisis , Nanopartículas/química , Luz Solar , Contaminantes Químicos del Agua/análisis , Óxido de Zinc/química , Catálisis , Agua Potable/normas , Sustancias Húmicas/efectos de la radiación , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Modelos Teóricos , Fotólisis , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/efectos de la radiación , Purificación del Agua/métodos , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA