Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 34(36): e2205767, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35841127

RESUMEN

Nitrate electrocatalytic reduction (NO3 RR) for ammonia production is a promising strategy to close the N-cycle from nitration contamination, as well as an alternative to the Haber-Bosch process with less energy consumption and carbon dioxide release. However, current long-term stability of NO3 RR catalysts is usually tens of hours, far from the requirements for industrialization. Here, symmetry-broken Cusingle-atom catalysts are designed, and the catalytic activity is retained after operation for more than 2000 h, while an average ammonia production rate of 27.84 mg h-1 cm-2 at an industrial level current density of 366 mA cm-2 is achieved, obtaining a good balance between catalytic activity and long-term stability. Coordination symmetry breaking is achieved by embedding one Cu atom in graphene nanosheets with two N and two O atoms in the cis-configuration, effectively lowering the coordination symmetry, rendering the active site more polar, and accumulating more NO3 - near the electrocatalyst surface. Additionally, the cis-coordination splits the Cu 3d orbitals, which generates an orbital-symmetry-matched π-complex of the key intermediate *ONH and reduces the energy barrier, compared with the σ-complex generated with other catalysts. These results reveal the critical role of coordination symmetry in single-atom catalysts, prompting the design of more coordination-symmetry-broken electrocatalysts toward possible industrialization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA