Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 188: 107-116, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146861

RESUMEN

Aerospace magnetic material scraps are abundant in cobalt and nickel. Sulfuric acid leaching process is an efficient method for extracting them. But it is a non-selective process, a significant amount of iron dissolves in the solution. This study focuses on the selective removal of iron from this solution using the jarosite process. Eh-pH diagram of K-S-Fe-H2O system was established. Based on thermodynamic analysis, H2O2 is used to oxidize Fe2+ into Fe3+, achieving efficient and selective removal of iron from the solution containing cobalt and nickel. The optimal conditions are as follows: temperature 95°C, K2SO4 dosage coefficient 1.5, seed dosage 10 g/L, time 90 min, pH 1.76, and endpoint pH controlled at approximately 3. Under these conditions, the iron removal efficiency is above 99%, while the loss ratios of cobalt and nickel are below 2%. The product is characterized by XRD and SEM-EDS. Results indicate that the product is jarosite ((K,H3O)Fe3(SO4)2(OH)6), exhibiting an ellipsoid structure with the mean particle size in the range of 0.2-5.0 µm. Temperature, pH value and seed dosage significantly affect reaction rate, particle size and crystallinity, and K2SO4 dosage mainly affects reaction rate and the morphology of jarosite. The jarosite crystallization kinetics can be described by the Avrami equation, with an Avrami index (n) of approximately 2.5 and the apparent activation energy of 42.68 kJ/mol.


Asunto(s)
Hierro , Ácidos Sulfúricos , Ácidos Sulfúricos/química , Hierro/química , Níquel/química , Cobalto/química , Concentración de Iones de Hidrógeno , Compuestos Férricos/química , Sulfatos/química , Peróxido de Hidrógeno/química , Temperatura , Termodinámica
2.
Polymers (Basel) ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125155

RESUMEN

The formation of polylactide stereocomplex (sc-PLA), involving the blending of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), enhances PLA materials by making them stronger and more heat-resistant. This study investigated the competitive crystallization behavior of homocrystals (HCs) and stereocomplex crystals (SCs) in a 50/50 PLLA/PDLA blend with added polyethylene glycol (PEG). PEG, with molecular weights of 400 g/mol and 35,000 g/mol, was incorporated at concentrations ranging from 5% to 20% by weight. Differential scanning calorimetry (DSC) analysis revealed that PEG increased the crystallization temperature, promoted SC formation, and inhibited HC formation. PEG also acted as a plasticizer, lowering both melting and crystallization temperatures. The second heating DSC curve showed that the pure PLLA/PDLA blend had a 57.1% fraction of SC while adding 5% PEG with a molecular weight of 400 g/mol resulted in complete SC formation. In contrast, PEG with a molecular weight of 35,000 g/mol was less effective, allowing some HC formation. Additionally, PEG consistently promoted SC formation across various cooling rates (2, 5, 10, or 20 °C/min), demonstrating a robust influence under different conditions.

3.
ACS Biomater Sci Eng ; 10(8): 5300-5312, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39087496

RESUMEN

The development of well-adherent, amorphous, and bioactive glass coatings for metallic implants remains a critical challenge in biomedical engineering. Traditional bioactive glasses are susceptible to crystallization and exhibit a thermal expansion mismatch with implant materials. This study introduces a novel approach to overcome these limitations by employing systematic Na2O substitution with CaO in borosilicate glasses. In-depth structural analysis (MD simulations, Raman spectroscopy, and NMR) reveals a denser network with smaller silicate rings, enhancing thermal stability, reducing thermal expansion, and influencing dissolution kinetics. This tailored composition exhibited optimal bioactivity (in vitro formation of bone-like apatite within 3 days) and a coefficient of thermal expansion closely matching Ti-6Al-4V, a widely used implant material. Furthermore, a consolidation process, meticulously designed with insights from crystallization kinetics and the viscosity-temperature relationship, yielded a crack-free, amorphous coating on Ti-6Al-4V substrates. This novel coating demonstrates excellent cytocompatibility and strong antibacterial action, suggesting superior clinical potential compared with existing technologies.


Asunto(s)
Materiales Biocompatibles Revestidos , Vidrio , Titanio , Vidrio/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Titanio/química , Prótesis e Implantes , Antibacterianos/química , Antibacterianos/farmacología , Ensayo de Materiales , Propiedades de Superficie , Aleaciones/química , Humanos
4.
Materials (Basel) ; 17(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998244

RESUMEN

Additively manufactured implants, surgical guides, and medical devices that would have direct contact with the human body require predictable behaviour when stress is applied during their standard operation. Products built with Fused Filament Fabrication (FFF) possess orthotropic characteristics, thus, it is necessary to determine the properties that can be achieved in the XY- and Z-directions of printing. A concentration of 10 wt% of hydroxyapatite (HA) in polyetherketoneketone (PEKK) matrix was selected as the most promising biomaterial supporting cell attachment for medical applications and was characterized with an Ultimate Tensile Strength (UTS) of 78.3 MPa and 43.9 MPa in the XY- and Z-directions of 3D printing, respectively. The effect of the filler on the crystallization kinetics, which is a key parameter for the selection of semicrystalline materials suitable for 3D printing, was explained. This work clearly shows that only in situ crystallization provides the ability to build parts with a more thermodynamically stable primary form of crystallites.

5.
J Phys Condens Matter ; 36(39)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38906134

RESUMEN

The power conversion efficiency of Pb-based single-junction perovskite solar cells (PSCs) has surpassed 26%; however, the biocompatibility concerns associated with Pb pose threats to both the environment and living organisms. Consequently, the development of Pb-free PSCs is imperative. Among the various alternatives to Pb-based PSCs, Sn-based PSCs have exhibited outstanding optoelectronic properties, showing great potential for large-scale manufacturing and commercialization. Nevertheless, there remains a significant efficiency gap between Sn-based and Pb-based PSCs. The disparity primarily stems from substantial open-circuit voltage (VOC) deficits in Sn-based PSCs, typically ranging from 0.4 to 0.6 V. The main reason ofVOCdeficits is severe non-radiative recombination losses, which are caused by the uncontrolled crystallization kinetics of Sn halide perovskites and the spontaneous oxidation of Sn2+. This review summarizes the reasons forVOCdeficits in Sn-based PSCs, and the corresponding strategies to mitigate these issues. Additionally, it outlines the persistent challenges and future prospects for Sn-based PSCs, providing guidance to assist researchers in developing more efficient and stable Sn-based perovskites.

6.
Int J Biol Macromol ; 271(Pt 2): 132691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810857

RESUMEN

Eco-friendly poly(L-lactic acid) (PLA) can be made more versatile, and its crystallization rate is accelerated by adding Zinc-based metal-organic framework (Zn-MOF) particles. Using differential scanning calorimetry (DSC), the non-isothermal melt crystallization behavior of biodegradable PLA nucleated by 0.3 to 3 wt% of Zn-MOF was examined. The non-isothermal melt crystallization kinetics parameters were determined using a modified Avrami model and Mo approach. Zn-MOF dramatically accelerated the crystallization process, as evidenced by several non-isothermal crystallization metrics, including the crystallization half-time and crystallization rate constant. The melt crystallization temperatures of the PLA-Zn-MOF composites, with contents of 0.7 and 1 wt%, were increased by 21 °C compared to the neat PLA. Using the Friedman isoconversional kinetic method, the neat PLA and PLA-Zn-MOF composites' effective activation energy values, ∆E, were determined. The ∆E values of PLA-Zn-MOF from 0.3 to 1 wt% Zn-MOF composites were lower than that of neat PLA. Moreover, polarized optical microscopy revealed the formation of numerous small-sized PLA spherulites upon Zn-MOF addition. The results indicate that the Zn-MOF (at concentrations of 0.7 to 1.0 wt%) can be used as an efficient nucleating agent for PLA, where it increases the melt crystallization temperature, nucleation density, and crystallinity without changing the crystalline structure, while also significantly reduces the effective activation energy and the size of spherulites. Additionally, scanning electron microscopy confirms good dispersion of Zn-MOF (0.3 to 1 wt%) within the PLA matrix.


Asunto(s)
Cristalización , Estructuras Metalorgánicas , Poliésteres , Zinc , Poliésteres/química , Zinc/química , Estructuras Metalorgánicas/química , Cinética , Rastreo Diferencial de Calorimetría , Temperatura , Tecnología Química Verde/métodos
7.
Mol Pharm ; 21(7): 3591-3602, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818946

RESUMEN

Coamorphous and cocrystal drug delivery systems provide attractive crystal engineering strategies for improving the solubilities, dissolution rates, and oral bioavailabilities of poorly water-soluble drugs. Polymeric additives have often been used to inhibit the unwanted crystallization of amorphous drugs. However, the transformation of a coamorphous phase to a cocrystal phase in the presence of polymers has not been fully elucidated. Herein, we investigated the effects of low concentrations of the polymeric excipients poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) on the growth of carbamazepine-celecoxib (CBZ-CEL) cocrystals from the corresponding coamorphous phase. PEO accelerated the growth rate of the cocrystals by increasing the molecular mobility of the coamorphous system, while PVP had the opposite effect. The coamorphous CBZ-CEL system exhibited two anomalously fast crystal growth modes: glass-to-crystal (GC) growth in the bulk and accelerated crystal growth at the free surface. These two fast growth modes both disappeared after doping with PEO (1-3% w/w) but were retained in the presence of PVP, indicating a potential correlation between the two fast crystal growth modes. We propose that the different effects of PEO and PVP on the crystal growth modes arose from weaker effects of the polymers on cocrystallization at the surface than in the bulk. This work provides a deep understanding of the mechanisms by which polymers influence the cocrystallization kinetics of a multicomponent amorphous phase and highlights the importance of polymer selection in stabilizing coamorphous systems or preparing cocrystals via solid-based methods.


Asunto(s)
Carbamazepina , Cristalización , Polietilenglicoles , Polímeros , Povidona , Solubilidad , Polímeros/química , Polietilenglicoles/química , Carbamazepina/química , Povidona/química , Excipientes/química , Vidrio/química
8.
Int J Biol Macromol ; 270(Pt 2): 132403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754660

RESUMEN

This study presents the synthesis of Hec-g@PS through the innovative surface modification of hectorite via photocatalytic atom transfer radical polymerization (ATRP). Then, PLA/Hec-g@PS nanocomposites films was prepared with Hec-g@PS as additives by blown molding technique. Furthermore, the thermal degradation kinetics and crystallization kinetics during the thermal degradation of PLA based nanocomposites films were investigated with simultaneous rheology and FTIR technology. The findings indicated that the activation energies for PLA and PLA/Hec-g@PS were -54,702.12 J/mol and -107,963.47 J/mol, respectively, demonstrating that Hec-g@PS substantially influenced PLA thermal stability. Additionally, while the crystallization rates of PLA based films decreased with rising degradation temperatures. Quantum chemical calculations revealed that the mode of interaction between Hec-g@PS and PLA was mainly dominated by dispersion, supplemented by electrostatic and induced interactions of -22.2103 kcal/mol, -16.0779 kcal/mol and -5.4954 kcal/mol, respectively. The combination of crystallization kinetics and quantum chemical calculations further confirmed that Hec-g@PS promoted the alignment of PLA molecular chains due to the enhanced interaction force between them. Hec-g@PS functioned as a nucleating agent, facilitating PLA crystallization and effectively mitigated its thermal degradation. Hec-g@PS as a nucleating agent provides valuable insights into the potential application prospects of biodegradable materials, particularly in the fields of biomedicine and packaging.


Asunto(s)
Cristalización , Nanocompuestos , Poliésteres , Reología , Poliésteres/química , Nanocompuestos/química , Espectroscopía Infrarroja por Transformada de Fourier , Cinética , Temperatura , Silicatos/química
9.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731419

RESUMEN

It is a valid path to realize the zero discharge of coal chemical wastewater by using the fractional crystallization method to recycle the miscellaneous salt in high-salinity wastewater. In this study, the thermodynamics and nucleation kinetics of sodium chloride (NaCl) and sodium sulfate (Na2SO4) crystallization in coal chemical wastewater were systematically studied. Through analyses of solubility, metastable zone width, and induction period, it was found that the impurity dimethoxymethane would increase the solid-liquid interface energy and critical crystal size during the nucleation of Na2SO4. Ternary phase diagrams of the pseudo-ternary Na2SO4-NaCl-H2O systems in simulated wastewater were plotted in the temperature range of 303.15 to 333.15 K, indicating that a co-ionization effect existed between NaCl and Na2SO4, and NaCl had a strong salting out effect on Na2SO4. Finally, the nucleation rate and growth rate of Na2SO4 crystals under simulated wastewater conditions were determined by the intermittent dynamic method, and the crystallization kinetic models of Na2SO4 were established. The crystallization nucleation of Na2SO4 crystals was found to be secondary nucleation controlled by surface reactions. The basic theoretical research of crystallization in this study is expected to fundamentally promote the application of fractional crystallization to realize the resource utilization of high-salinity wastewater in the coal chemical industry.

10.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38743928

RESUMEN

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Asunto(s)
Cristalización , Agua , Cristalización/métodos , Agua/química , Cinética , Estabilidad de Medicamentos , Nifedipino/química , Compuestos de Vinilo/química , Termodinámica , Pirrolidinas/química , Viscosidad , Química Farmacéutica/métodos , Humedad , Temperatura , Solubilidad , Metilcelulosa/química , Metilcelulosa/análogos & derivados
11.
Angew Chem Int Ed Engl ; 63(17): e202317794, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38424035

RESUMEN

Tin halide perovskites (THPs) have demonstrated exceptional potential for various applications owing to their low toxicity and excellent optoelectronic properties. However, the crystallization kinetics of THPs are less controllable than its lead counterpart because of the higher Lewis acidity of Sn2+, leading to THP films with poor morphology and rampant defects. Here, a colloidal zeta potential modulation approach is developed to improve the crystallization kinetics of THP films inspired by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. After adding 3-aminopyrrolidine dihydro iodate (APDI2) in the precursor solution to change the zeta potential of the pristine colloids, the total interaction potential energy between colloidal particles with APDI2 could be controllably reduced, resulting in a higher coagulation probability and a lower critical nuclei concentration. In situ laser light scattering measurements confirmed the increased nucleation rate of the THP colloids with APDI2. The resulting film with APDI2 shows a pinhole-free morphology with fewer defects, achieving an impressive efficiency of 15.13 %.

12.
Small ; 20(30): e2308715, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38412419

RESUMEN

Biomolecular piezoelectric materials show great potential in the field of wearable and implantable biomedical devices. Here, a self-assemble approach is developed to fabricating flexible ß-glycine piezoelectric nanofibers with interfacial polarization locked aligned crystal domains induced by Nb2CTx nanosheets. Acted as an effective nucleating agent, Nb2CTx nanosheets can induce glycine to crystallize from edges toward flat surfaces on its 2D crystal plane and form a distinctive eutectic structure within the nanoconfined space. The interfacial polarization locking formed between O atom on glycine and Nb atom on Nb2CTx is essential to align the ß-glycine crystal domains with (001) crystal plane intensity extremely improved. This ß-phase glycine/Nb2CTx nanofibers (Gly-Nb2C-NFs) exhibit fabulous mechanical flexibility with Young's modulus of 10 MPa, and an enhanced piezoelectric coefficient of 5.0 pC N-1 or piezoelectric voltage coefficient of 129 × 10-3Vm N-1. The interface polarization locking greatly improves the thermostability of ß-glycine before melting (≈210°C). A piezoelectric sensor based on this Gly-Nb2C-NFs is used for micro-vibration sensing in vivo in mice and exhibits excellent sensing ability. This strategy provides an effective approach for the regular crystallization modulation for glycine crystals, opening a new avenue toward the design of piezoelectric biomolecular materials induced by 2D materials.

13.
Mol Pharm ; 21(2): 957-969, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38173336

RESUMEN

One way to increase the slow dissolution rate and the associated low bioavailability of newly developed active pharmaceutical ingredients (APIs) is to dissolve the API in a polymer, leading to a so-called amorphous solid dispersion (ASD). However, APIs are often supersaturated in ASDs and thus tend to crystallize during storage. The kinetics of the crystallization process is determined by the amount of water the ASD absorbs during storage at relative humidity (RH), storage temperature, polymer type, and the drug load of the ASD. Here, the crystallization kinetics and shelf life of spray-dried ASDs were investigated for ASDs consisting of nifedipine (NIF) or celecoxib (CCX) as the APIs and of poly(vinylpyrrolidone-co-vinyl acetate) or hydroxypropyl methylcellulose acetate succinate as polymers. Samples were stored over 2 years at different RHs covering conditions above and below the glass transition of the wet ASDs. Crystallization kinetics and onset time of the crystallization were qualitatively studied by using powder X-ray diffraction and microscopic inspection and were quantitatively determined by using differential scanning calorimetry. It was found that the NIF ASDs crystallize much faster than CCX ASDs at the same drug load and at the same storage conditions due to both higher supersaturation and higher molecular mobility in the NIF ASDs. Experimental data on crystallization kinetics were correlated using the Johnson-Mehl-Avrami-Kolmogorov equation. A detailed thermodynamic and kinetic modeling will be performed in Part 2 of this paper series.


Asunto(s)
Polímeros , Agua , Cristalización , Agua/química , Estabilidad de Medicamentos , Solubilidad , Polímeros/química
14.
Angew Chem Int Ed Engl ; 63(17): e202319170, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38230504

RESUMEN

Metal halide perovskites (MHPs) are considered ideal photovoltaic materials due to their variable crystal material composition and excellent photoelectric properties. However, this variability in composition leads to complex crystallization processes in the manufacturing of Metal halide perovskite (MHP) thin films, resulting in reduced crystallinity and subsequent performance loss in the final device. Thus, understanding and controlling the crystallization dynamics of perovskite materials are essential for improving the stability and performance of PSCs (Perovskite Solar Cells). To investigate the impact of crystallization characteristics on the properties of MHP films and identify corresponding modulation strategies, we primarily discuss the relevant aspects of MHP crystallization kinetics, systematically summarize theoretical methods, and outline modulation techniques for MHP crystallization, including solution engineering, additive engineering, and component engineering, which helps highlight the prospects and current challenges in perovskite crystallization kinetics.

15.
Angew Chem Int Ed Engl ; 63(14): e202319282, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38272832

RESUMEN

The power conversion efficiencies (PCEs) of perovskite solar cells have recently developed rapidly compared to crystalline silicon solar cells. To have an effective way to control the crystallization of perovskite thin films is the key for achieving good device performance. However, a paradox in perovskite crystallization is from the mismatch between nucleation and Oswald ripening. Usually, the large numbers of nucleation sites tend to weak Oswald ripening. Here, we proposed a new mechanism to promote the formation of nucleation sites by reducing surface energy from 44.9 mN/m to 36.1 mN/m, to spontaneously accelerate the later Oswald ripening process by improving the grain solubility through the elastic modulus regulation. The ripening rate is increased from 2.37 Åm ⋅ s-1 to 4.61 Åm ⋅ s-1 during annealing. Finally, the solar cells derived from the optimized films showed significantly improved PCE from 23.14 % to 25.32 %. The long-term stability tests show excellent thermal stability (the optimized device without encapsulation maintaining 82 % of its initial PCE after 800 h aging at 85 °C) and an improved light stability under illumination. This work provides a new method, the elastic modulus regulation, to enhance the ripening process.

16.
Materials (Basel) ; 17(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38255576

RESUMEN

In this study, thin ribbons of amorphous Mg72Zn27Pt1 and Mg72Zn27Ag1 alloys with potential use in biomedicine were analyzed in terms of the crystallization mechanism. Non-isothermal annealing in differential scanning calorimetry (DSC) with five heating rates and X-ray diffraction (XRD) during heating were performed. Characteristic temperatures were determined, and the relative crystalline volume fraction was estimated. The activation energies were calculated using the Kissinger method and the Avrami exponent using the Jeziorny-Avrami model. The addition of platinum and silver shifts the onset of crystallization towards higher temperatures, but Pt has a greater impact. In each case, Eg > Ex > Ep (activation energy of the glass transition, the onset of crystallization, and the peak, respectively), which indicates a greater energy barrier during glass transition than crystallization. The highest activation energy was observed for Mg72Zn27Pt1 due to the difference in the size of the atoms of all alloy components. The crystallization in Mg72Zn27Ag1 occurs faster than in Mg72Zn27Pt1, and the alloy with Pt has higher (temporary) thermal stability. The Avrami exponent (n) values oscillate in the range of 1.7-2.6, which can be interpreted as one- and two-dimensional crystal growth with a constant/decreasing nucleation rate during the process. Moreover, the lower the heating rate, the higher the nucleation rate. The values of n for Mg72Zn27Pt1 indicate a greater number of nuclei and grains than for Mg72Zn27Ag1. The XRD tests indicate the presence of α-Mg and Mg12Zn13 for both Mg72Zn27Pt1 and Mg72Zn27Ag1, but the contribution of the Mg12Zn13 phase is greater for Mg72Zn27Ag1.

17.
Adv Mater ; 36(9): e2307583, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37824785

RESUMEN

The critical requirement for ambient-printed formamidinium lead iodide (FAPbI3 ) lies in the control of nucleation-growth kinetics and defect formation behavior, which are extensively influenced by interactions between the solvent and perovskite. Here, a strategy is developed that combines a cosolvent and an additive to efficiently tailor the coordination between the solvent and perovskite. Through in situ characterizations, the direct crystallization from the sol-gel phase to α-FAPbI3 is illustrated. When the solvent exhibits strong interactions with the perovskite, the sol-gel phases cannot effectively transform into α-FAPbI3 , resulting in a lower nucleation rate and confined crystal growth directions. Consequently, it becomes challenging to fabricate high-quality void-free perovskite films. Conversely, weaker solvent-perovskite coordination promotes direct crystallization from sol-gel phases to α-FAPbI3 . This process exhibits more balanced nucleation-growth kinetics and restrains the formation of defects and microstrains in situ. This strategy leads to improved structural and optoelectronic properties within the FAPbI3 films, characterized by more compact grain stacking, smoother surface morphology, released lattice strain, and fewer defects. The ambient-printed FAPbI3 perovskite solar cells fabricated using this strategy exhibit a remarkable power conversion efficiency of 24%, with significantly reduced efficiency deviation and negligible decreases in the stabilized output.

18.
Adv Mater ; 36(5): e2308692, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939356

RESUMEN

Nowadays, the development of wide-bandgap perovskite by thermal evaporation and spin-coating hybrid sequential deposition (HSD) method has special meaning on textured perovskite/silicon tandem solar cells. However, the common issues of insufficient reaction caused by blocking of perovskite capping layer are exacerbated in HSD, because evaporated precursors are usually denser with higher crystallinity and the widely used additive-assisted microstructure is also difficult to access. Here, a facile "diffusible perovskite capping layer" (DPCL) strategy to solve this dilemma is presented. With DPCL, crystallization alleviation of perovskite and more diffusion channels of organic salts can be realized simultaneously, contributing to a homogenization process. The resultant perovskite films exhibit complete conversion, uniform crystallization, enhanced quality, and reduced defect, leading to obvious improvements in device efficiency, repeatability, and stability. This work offers a way to promote the development of textured tandems a step further.

19.
IUCrJ ; 11(Pt 1): 23-33, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962472

RESUMEN

Fatty acid-derivative prodrugs have been utilized extensively to improve the physicochemical, biopharmaceutical and pharmacokinetic properties of active pharmaceutical ingredients. However, to our knowledge, the crystallization behavior of prodrugs modified with different fatty acids has not been explored. In the present work, a series of paliperidone aliphatic prodrugs with alkyl chain lengths ranging from C4 to C16 was investigated with respect to crystal structure, crystal morphology and crystallization kinetics. The paliperidone derivatives exhibited isostructural crystal packing, despite the different alkyl chain lengths, and crystallized with the dominant (100) face in both melt and solution. The rate of crystallization for paliperidone derivatives in the melt increases with alkyl chain length owing to greater molecular mobility. In contrast, the longer chains prolong the nucleation induction time and reduce the crystal growth kinetics in solution. The results show a correlation between difficulty of nucleation in solution and the interfacial energy. This work provides insight into the crystallization behavior of paliperidone aliphatic prodrugs and reveals that the role of alkyl chain length in the crystallization behavior has a strong dependence on the crystallization method.


Asunto(s)
Palmitato de Paliperidona , Profármacos , Cristalización , Ácidos Grasos
20.
Materials (Basel) ; 16(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068071

RESUMEN

In this review, we systematically reviewed the recent advances in the development of ultrafine shape memory alloys with unique shape memory effects and superelastic behavior using amorphous metallic materials. Its scientific contribution involves defining and expanding the range of fabrication methods for single-phase ultrafine/nanocrystalline alloys with multicomponent systems. In multicomponent amorphous alloys, the crystallization mechanism depends on the alloy composition and is a selectable factor in the alloy designing method, considering the thermodynamic and physical parameters of constituent elements. The crystallization kinetics can be controlled by modulating the annealing condition in a supercooled liquid state with consideration of the crystalline temperature of the amorphous alloys. The phase stability of austenite and martensite phases in ultrafine shape memory alloys developed from amorphous precursors is determined according to alloy composition and grain size, which strongly influence the shape memory effect and superelastic behavior. A methodological framework is subsequently suggested to develop the ultrafine shape memory alloys based on the systematic alloy designing method, which can be considered an important strategy for developing novel ultrafine/nanocrystalline shape memory alloys with excellent shape memory and superelastic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA