Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38428625

RESUMEN

Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin. Analysis of hepatic RNA-seq data indicated a dose-dependent response to these compounds, including the upregulation of several genes encoding transcription factors and numerous phase I, II, and III biotransformation families. Notably, elevated expression of five biotransformation families - carboxylesterases, cytochromes P450, aldo-keto reductases, epoxide hydrolases, and UDP-glucuronosyltransferases - corresponded to species-specific duplication events in the genome, suggesting that these genes play a prominent role in N. lepida's adaptation to creosote bush. Building on pharmaceutical studies in model rodents, we propose a hypothesis for how the differentially expressed genes are involved in the biotransformation of creosote xenobiotics. Our results provide some of the first details about how these processes likely operate in the liver of a specialized mammalian herbivore.


Asunto(s)
Larrea , Humanos , Animales , Larrea/metabolismo , Creosota/toxicidad , Creosota/metabolismo , Herbivoria/genética , Biotransformación , Roedores/metabolismo , Sigmodontinae/genética , Sigmodontinae/metabolismo
2.
Chemosphere ; 352: 141240, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266881

RESUMEN

Creosote has been used in Sweden as a wood preservative in buildings since the 19th century. These buildings can function as workplaces, homes, and cultural buildings to which the public has access. Creosote contains polycyclic aromatic hydrocarbons (PAH) which are well known carcinogens. To understand exposure and risks in an indoor environment, it is important to determine air levels of parent PAHs as well as the more toxic nitrated and oxygenated PAH derivatives (NPAH, OPAH). This study aims to investigate indoor air levels of polycyclic aromatic compounds (PACs) e.g., PAH, NPAH, OPAH and dibenzothiophenes in buildings containing creosote sources and whether these levels pose a health risk. Four cultural buildings were studied, all located within a radius of 130 m. Two were known to have creosote sources, and two had not. Polyurethane foam passive air samplers (PUF-PAS) were used to indicate possible point sources. PUF-PAS measurements were performed for one month in each building winter and summer. Simultaneously, PAC outdoor level measurements were performed. Buildings with creosote impregnated constructions had notably higher indoor air levels of PAC (31-1200 ng m-3) compared to the two buildings without creosote sources (14-45 ng m-3). The PAH cancer potency (sum of benzo[a]pyrene equivalents (BaPeq)) was more than one order of magnitude higher in the buildings containing creosote impregnated wood compared to reference buildings. The highest value was 5.1 BaPeq ng m-3 which was significantly higher than the outdoor winter measurement (1.3 BaPeq ng m-3). Fluoranthene and phenanthrene, with significant distribution in gas phase, but also several particulate NPAHs contributed significantly to the total cancer risk. Thus, creosote containing buildings can still contaminate the indoor air with PACs despite being over a hundred years old. The PUF-PAS was shown to be a good tool providing quantitative/semiquantitative measures of PACs exposure in indoor microenvironments.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Humanos , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Creosota , Contaminación del Aire Interior/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Microambiente Tumoral
3.
Environ Monit Assess ; 195(8): 967, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37464226

RESUMEN

Creosote is an organic pollutant formed by a complex mixture of highly toxic and carcinogenic compounds and classified as a dense non-aqueous phase liquid (DNAPL). Its migration depends on media and fluid properties that control the multiphase flow in the subsurface. Residual saturation and hydraulic conductivity are essential parameters to accurately simulate fluid displacement in porous media. This work shows the behavior of creosote in porous medium for sandy and clay soils, collected in a contaminated area in the state of São Paulo, Brazil. Creosote retention was evaluated and compared to water. The retention curve parameters were obtained based on van Genuchten and Brooks and Corey models. The hydraulic conductivities of creosote and water are presented for both soils. The results show that, in the clay soil, water was more retained than creosote, while in the sandy soil, creosote retention was higher. The hydraulic conductivity values obtained in the clay soil show a difference of two orders of magnitude between creosote and water. Although creosote is a viscous fluid, it presents considerable mobility in the clay soil, which is relevant in remediation processes. This study advances our knowledge about DNAPL behavior in clay and sand, and no other study of creosote parameters in these porous media was found. A more accurate estimate of the time required for a liquid spill to reach groundwater can then be predicted, so that appropriate actions can be taken and risk management can be carried out.


Asunto(s)
Contaminantes del Suelo , Suelo , Arcilla , Arena , Creosota , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Brasil
4.
Artículo en Inglés | MEDLINE | ID: mdl-37047962

RESUMEN

Creosote, a mixture of polycyclic aromatic hydrocarbons (PAHs), was and is a wood impregnate of widespread use. Over the years the accumulation of creosote PAHs in soils and freshwaters has increased, causing a threat to ecosystems. The combined ozonation-biodegradation process is proposed to improve the slow and inefficient biodegradation of creosote hydrocarbons. The impact of different ozonation methods on the biodegradation of model wastewater was evaluated. The biodegradation rate, the changes in chemical oxygen demand, and the total organic carbon concentration were measured in order to provide insight into the process. Moreover, the bacteria consortium activity was monitored during the biodegradation step of the process. The collected data confirmed the research hypothesis, which was that the hybrid method can improve biodegradation. The pre-ozonation followed by inoculation with a bacteria consortium resulted in a significant increase in the biodegradation rate. It allows for the shortening of the time required for the consortium to reach maximum degradation effectiveness and cell activity. Hence, the study gives an important and useful perspective for the decontamination of creosote-polluted ecosystems.


Asunto(s)
Ozono , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Creosota/metabolismo , Ecosistema , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Bacterias/metabolismo , Microbiología del Suelo
5.
Materials (Basel) ; 16(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37048999

RESUMEN

A fundamental issue of waste management and the rail transport industry is the problem of utilizing used railroad ties. Wooden railroad ties are treated with a preservative, usually creosote. Due to their high toxicity, railroad ties are considered hazardous waste and must be utilized under various directives. It is proposed to utilize the troublesome waste by using the pyrolysis and torrefaction process. The research proves that the thermal method is effective for disposing of this type of waste. Torrefaction up to 250 °C gives high efficiency of impregnation removal, while pyrolysis up to 400 °C completely neutralizes waste. A series of experiments were conducted for various final pyrolysis temperatures to determine a minimum temperature for which the obtained solid products are free from creosote. Extraction with the use of the Soxhlet technique was performed for the raw materials and the obtained solid products-chars. The oil content for liquid fraction was also examined for each sample. As a result of the thermal treatment of the waste, fuel with combustion parameters better than wood was obtained. For a high final temperature of the process, the calorific value of char is close to that of hard coal.

6.
J Chromatogr A ; 1698: 464007, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37099903

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) in creosote products used for wood preservation are regulated in Japan. Although the analytical method for this regulation has been stipulated by law, two main problems have been highlighted, namely the use of dichloromethane, a potential carcinogen, as a solvent and inadequate purification. Therefore, an analytical method to solve these problems was developed in this study. Actual creosote-treated wood samples were examined, and it was found that acetone could be used as an alternative solvent. Purification methods using centrifugation, silica gel cartridges, and strong anion exchange (SAX) cartridges were also developed. It was found that the SAX cartridges strongly retained PAHs, and an effective purification method was developed using this phenomenon, in which contaminants were removed by washing with diethyl ether/hexane (1/9 v/v), which could not be achieved with a silica gel cartridge. This strong retention was attributed to cation-π interactions. The analytical method developed in this study yielded good recoveries (81.4-113.0%) with low relative standard deviations (<6.8%), and the limit of quantification (0.02-0.29 µg/g) was significantly lower than the current creosote product regulation. Therefore, this method can safely and effectively extract and purify PAHs from creosote products.


Asunto(s)
Creosota , Hidrocarburos Policíclicos Aromáticos , Gel de Sílice , Madera , Solventes
7.
Environ Geochem Health ; 45(2): 333-342, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35246781

RESUMEN

Residents and advocacy groups began voicing concerns over the environmental quality located in the neighborhoods of Kashmere Gardens, Fifth Ward, and Denver Harbor in Houston, TX, following the confirmation of a cancer cluster in 2019 and another in 2021. These neighborhoods are in close proximity to a railyard and former wood treatment plant known to have utilized coal tar creosote and contain polycyclic aromatic hydrocarbons (PAHs). This research took core soil samples in September and October 2020 from 46 sites to assess for the presence and concentration of the U.S. Environmental Protection Agency's (USEPA) 7 Carcinogenic PAHs. Results showed the cumulative concentration of these PAHs in each sample was variable with a range of 13,767 ng/g to 328 ng/g and a mean of 2,517.2 ng/g ± 3122. A regional soil screening evaluation revealed that 40 of the 46 soil samples were in excess of the USEPAs most conservative screening levels of 1.0 × 10-6 increased cancer risk, but none exceeding levels considered actionable for remediation. This study is a fundamental first step for quantifying the environmental pollutants in this minority-majority community. Findings revealed a low risk of cancer risk based on current PAH concentrations alone but cannot assess contributions from other contaminants or from past, possibly higher, levels of contamination. Further research is needed to identify the potential casual pathways of the observed cancer cluster and to explore possible remediation needs.


Asunto(s)
Neoplasias , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Suelo , Carbón Mineral/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Texas/epidemiología , Justicia Ambiental , Neoplasias/inducido químicamente , Neoplasias/epidemiología , Medición de Riesgo , China
8.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293297

RESUMEN

Creosote oil, a byproduct of coal distillation, is primarily composed of aromatic compounds that are difficult to degrade, such as polycyclic aromatic hydrocarbons, phenolic compounds, and N-, S-, and O-heterocyclic compounds. Despite its toxicity and carcinogenicity, it is still often used to impregnate wood, which has a particularly negative impact on the condition of the soil in plants that impregnate wooden materials. Therefore, a rapid, effective, and eco-friendly technique for eliminating the creosote in this soil must be developed. The research focused on obtaining a preparation of Bjerkandera adusta DSM 3375 mycelium immobilized in polyurethane foam (PUF). It contained mold cells in the amount of 1.10 ± 0.09 g (DW)/g of the carrier. The obtained enzyme preparation was used in the bioremediation of soil contaminated with creosote (2% w/w). The results showed that applying the PUF-immobilized mycelium of B. adusta DSM 3375 over 5, 10, and 15 weeks of bioremediation, respectively, removed 19, 30, and 35% of creosote from the soil. After 15 weeks, a 73, 79, and 72% level of degradation of fluoranthene, pyrene, and fluorene, respectively, had occurred. The immobilized cells have the potential for large-scale study, since they can degrade creosote oil in soil.


Asunto(s)
Coriolaceae , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Creosota/análisis , Creosota/metabolismo , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Microbiología del Suelo , Pirenos , Fluorenos , Carbón Mineral
9.
Plants (Basel) ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956448

RESUMEN

This study was conducted to assess the survival rates, growth, and chlorophyll fluorescence (Fv/Fm) of four hybrid aspen (14, 191, 27, 291) and two European aspen (R3 and R4) clones cultivated in creosote- and diesel oil-contaminated soil treatments under three different plant densities: one plant per pot (low density), two plants per pot (medium density), and six plants per pot (high density) over a period of two years and three months. Evaluating the survival, growth, and Fv/Fm values of different plants is a prerequisite for phytoremediation to remediate polluted soils for ecological restoration and soil health. The results revealed that contaminated soils affected all plants' survival rates and growth. However, plants grown in the creosote-contaminated soil displayed a 99% survival rate, whereas plants cultivated in the diesel-contaminated soil showed a 22−59% survival rate. Low plant density resulted in a higher survival rate and growth than in the other two density treatments. In contrast, the medium- and high-density treatments did not affect the plant survival rate and growth to a greater extent, particularly in contaminated soil treatments. The effects of clonal variation on the survival rate, growth, and Fv/Fm values were evident in all treatments. The results suggested that hybrid aspen clones 14 and 291, and European aspen clone R3 were suitable candidates for the phytoremediation experiment, as they demonstrated reasonable survival rates, growth, and Fv/Fm values across all treatments. A superior survival rate for clone 291, height and diameter growth, and stem dry biomass production for clone 14 were observed in all soil treatments. Overall, a reasonable survival rate (~75%) and Fv/Fm value (>0.75) for all plants in all treatments, indicating European aspen and hybrid aspen have considerable potential for phytoremediation experiments. As the experiment was set up for a limited period, this study deserves further research to verify the growth potential of different hybrid aspen and European aspen clones in different soil and density treatment for the effective phytoremediation process to remediate the contaminated soil.

10.
J Environ Manage ; 317: 115403, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35660830

RESUMEN

Benzo[a]pyrene (BaP) is a major indicator of soil contamination and categorized as a highly persistent, carcinogenic, and mutagenic polycyclic aromatic hydrocarbon. An advanced peroxyacid oxidation process was developed to reduce soil pollution caused by BaP originating from creosote spills from railroad sleepers. The pH, organic matter, particle size distribution of soil, and concentrations of BaP and heavy metals (Cd, Cu, Zn, Pb, and As) in the BaP-contaminated soils were estimated. A batch experiment was conducted to determine the effects of organic acid type, soil particle size, stirring speed, and reaction time on the peroxyacid oxidation of BaP in the soil samples. Additionally, the effect of the organic acid concentration on the peroxyacid degradation of BaP was investigated using an oxidizing agent in spiked soil with and without hydrogen peroxide. The results of the oxidation process indicated that BaP and heavy metal residuals were below acceptable Korean standards. A significant difference in the oxidative degradation of BaP was observed between the spiked and natural soil samples. The formation of a peroxyacid intermediate was primarily responsible for the enhanced BaP oxidation. Further, butyric acid could be reused thrice without losing the efficacy (<90%). The systematic peroxyacid oxidative degradation mechanism of BaP was also discussed. A qualitative analysis of the by-products of the BaP reaction was conducted, and their corresponding toxicities were determined for possible field applications. The findings conclude that the developed peroxyacid oxidation method has potential applications in the treatment of BaP-contaminated soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Benzo(a)pireno/análisis , Benzo(a)pireno/metabolismo , Metales Pesados/análisis , Estrés Oxidativo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
11.
Appl Microbiol Biotechnol ; 106(4): 1715-1727, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35089401

RESUMEN

Estuarine sediments near former creosoting facilities along the Elizabeth River (Virginia, USA) are contaminated by polycyclic aromatic hydrocarbons (PAHs). In this study, we interrogated the bacterial community of the Elizabeth River with both culture-based and culture-independent methods to identify potential candidates for bioremediation of these contaminants. DNA-based stable isotope probing (SIP) experiments with phenanthrene and fluoranthene using sediment from the former Republic Creosoting site identified relevant PAH-degrading bacteria within the Azoarcus, Hydrogenophaga, and Croceicoccus genera. Targeted cultivation of PAH-degrading bacteria from the same site recovered 6 PAH-degrading strains, including one strain highly similar to Hydrogenophaga sequences detected in SIP experiments. Other isolates were most similar to organisms within the Novosphingobium, Sphingobium, Stenotrophomonas, and Alcaligenes genera. Lastly, we performed 16S rRNA gene amplicon microbiome analyses of sediment samples from four sites, including Republic Creosoting, with varying concentrations of PAHs. Analysis of these data showed a striking divergence of the microbial community at the highly contaminated Republic Creosoting site from less contaminated sites with the enrichment of several bacterial clades including those affiliated with the Pseudomonas genus. Sequences within the microbiome libraries similar to SIP-derived sequences were generally found at high relative abundance, while the Croceicoccus sequence was present at low to moderate relative abundance. These results suggest that Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation, while Croceicoccus spp. might be good targets for bioaugmentation in these sediments. Furthermore, this study demonstrates the value of culture-based and culture-independent methods in identifying promising bacterial candidates for use in a precision bioremediation scheme. KEY POINTS: • This study highlights the importance of using multiple strategies to identify promising bacterial candidates for use in a precision bioremediation scheme. • We used both selective cultivation techniques and DNA-based stable isotope probing to identify bacterial degraders of prominent PAHs at a historically contaminated site in the Elizabeth River, VA, USA. • Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation in Elizabeth River sediments, while Croceicoccus spp. might be good targets for bioaugmentation.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Bacterias/genética , Biodegradación Ambiental , Sedimentos Geológicos , ARN Ribosómico 16S/genética , Ríos , Contaminantes del Suelo/análisis
12.
Funct Ecol ; 36(8): 2119-2131, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37727272

RESUMEN

Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes.We investigated the tolerances of two species of herbivorous woodrats, Neotoma lepida (desert woodrat) and Neotoma bryanti (Bryant's woodrat) to creosote bush (Larrea tridentata), a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of feces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin.Toxin tolerance was analyzed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, with N. lepida persisting 20% longer than N. bryanti in feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected greater than 25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush.The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometers outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape-level scales in mammalian herbivores.

13.
Pharmacology ; 106(11-12): 637-643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34537769

RESUMEN

INTRODUCTION: Anisakiasis is a common disease in countries such as Japan, where raw or undercooked marine fish are frequently consumed. The disease is caused by accidental ingestion of a live larva of Anisakis in raw or undercooked marine fish. In typical cases, it causes abrupt gastrointestinal symptoms, such as epigastric pain, nausea, and vomiting. According to a published report, the disease was alleviated by oral ingestion of an over-the-counter drug containing wood creosote. METHODS: We performed an in vitro experiment to elucidate whether wood creosote can inhibit the motor activity of Anisakis larvae, using infrared locomotion tracking and agarose gel penetration techniques. RESULTS: Our results clearly demonstrate that wood creosote inhibits the motor activity of Anisakis larvae. The concentration of wood creosote used in our experiment is similar to that found in stomach juice when a usual oral dose is taken of the medicine containing wood creosote. DISCUSSION/CONCLUSION: Our results suggest the potential usefulness of the medicine containing wood creosote in the treatment of acute Anisakis infection of the gastrointestinal tract.


Asunto(s)
Anisakis/efectos de los fármacos , Creosota/farmacología , Larva/efectos de los fármacos , Animales , Anisakiasis/tratamiento farmacológico , Larva/genética
14.
Bioresour Technol ; 338: 125521, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34273631

RESUMEN

This study aims to explore distinct bacterial strains from wood-feeding termites and to construct novel bacterial consortium for improving the methane yield during anaerobic digestion by degrading birchwood sawdust (BSD) and removing creosote (CRO) compounds simultaneously. A novel bacterial consortium CTB-4 which stands for the molecularly identified species Burkholderia sp., Xanthomonas sp., Shewanella sp., and Pseudomonas mosselii was successfully developed. The CTB-4 consortium showed high efficiency in the removal of naphthalene and phenol. It also revealed reduction in lignin, hemicellulose, and cellulose by 19.4, 52.5, and 76.8%, respectively. The main metabolites after the CRO degradation were acetic acid, succinate, pyruvate, and acetaldehyde. Pretreatment of treated BSD mixed with CRO enhanced the total methane yield (162 L/kg VS) by 82.7% and biomass reduction by 54.7% compared to the untreated substrate. CRO showed a toxicity decrease of >90%, suggesting the efficiency of constructed bacterial consortia in bioremediation and biofuel production.


Asunto(s)
Isópteros , Madera , Anaerobiosis , Animales , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Biocombustibles/análisis , Creosota , Lignina/metabolismo , Metano , Consorcios Microbianos , Pseudomonas , Madera/química
15.
Chem Pharm Bull (Tokyo) ; 68(12): 1193-1200, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268651

RESUMEN

Anisakiasis is common in countries where raw or incompletely cooked marine fish are consumed. Currently, effective therapeutic methods to treat anisakiasis are unavailable. A recent study found that wood creosote inactivates the movement of Anisakis species. Essential oil of Origanum compactum containing carvacrol and thymol, which are similar to the constituents of wood creosote, was reported to inactivate Anisakis by inhibiting its acetylcholinesterase. We examined whether wood creosote can also inhibit acetylcholinesterase. We examined the effect of components of wood creosote using the same experimental method. A computer simulation experiment (molecular docking) was also performed. Here, we demonstrate that wood creosote inactivated acetylcholinesterase in a dose-dependent manner with an IC50 of 0.25 mg/mL. Components of wood creosote were also tested individually: 5-methylguaiacol, p-cresol, guaiacol, o-cresol, 2,4-dimethylphenol, m-cresol, phenol and 4-methylguaiacol inactivated the enzyme with an IC50 of 14.0, 5.6, 17.0, 6.3, 3.9, 10.0, 15.2 and 27.2 mM, respectively. The mechanism of acetylcholinesterase inactivation was analyzed using a computer-based molecular docking simulation, which employed a three-dimensional structure of acetylcholinesterase and above phenolic compounds as docking ligands. The simulation indicated that the phenolic compounds bind to the active site of the enzyme, thereby competitively blocking entry of the substrate acetylcholine. These findings suggest that the mechanism for the inactivation of Anisakis movement by wood creosote is due to inhibition of acetylcholinesterase needed for motor neuron activity.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Creosota/farmacología , Fenoles/farmacología , Madera/química , Animales , Inhibidores de la Colinesterasa/química , Creosota/química , Relación Dosis-Respuesta a Droga , Electrophorus , Simulación del Acoplamiento Molecular , Estructura Molecular , Fenoles/química , Relación Estructura-Actividad
16.
J Environ Manage ; 276: 111270, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32866752

RESUMEN

While creosote components have very low water solubility, concerns have been raised about potential environmental effects and stimulated research to minimize migration. Best management practices have been developed but there are few data quantifying their effects. The effects of post-treatment steaming on migration of polycyclic aromatic hydrocarbons (PAHs) from horizontally oriented creosote treated southern pine decking subjected to simulated rainfall were examined. Twelve of the 16 PAHs examined were detected in runoff during the rainfall exposure but at concentrations well below those predicted by water solubility. PAH levels declined with increasing rainfall time, although the differences were sometimes slight. Steaming for 1 h had minimal effect on PAH levels in runoff while 3 h of steaming produced more noticeable reductions ranging from ~20 to 80% for naphthalene, acenaphthylene, and acenaphthene. Longer post-treatment steaming times reduced initial losses of creosote components from treated wood.


Asunto(s)
Creosota , Hidrocarburos Policíclicos Aromáticos , Madera
17.
Chemosphere ; 252: 126208, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32229362

RESUMEN

Even though many fungi are known to degrade a range of organic chemicals and may be advantageous for targeting hydrophobic chemicals with low bioavailability due to their ability to secrete extracellular enzymes, fungi are not commonly leveraged in the context of bioremediation. Here we sought to examine the fungal microbiome (mycobiome) at a model creosote polluted site to determine if fungi were prevalent under high PAH contamination conditions as well as to identify potential mycostimulation targets. Several significant positive associations were detected between OTUs and mid-to high-molecular weight PAHs. Several OTUs were closely related to taxa that have previously been identified in culture-based studies as PAH degraders. In particular, members belonging to the Ascomycota phylum were the most diverse at higher PAH concentrations suggesting this phylum may be promising biostimulation targets. There were nearly three times more positive correlations as compared to negative correlations, suggesting that creosote-tolerance is more common than creosote-sensitivity in the fungal community. Future work including shotgun metagenomic analysis would help confirm the presence of specific degradation genes. Overall this study suggests that mycobiome and bacterial microbiome analyses should be performed in parallel to devise the most optimal in situ biostimulation treatment strategies.


Asunto(s)
Creosota/análisis , Sitios de Residuos Peligrosos , Micobioma , Microbiología del Suelo , Contaminantes del Suelo/análisis , Ascomicetos/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Microbiota , Hidrocarburos Policíclicos Aromáticos/análisis
18.
Plant Cell Environ ; 43(6): 1467-1483, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112440

RESUMEN

Non-structural carbohydrates (NSCs) are necessary for plant growth and affected by plant water status, but the temporal dynamics of water stress impacts on NSC are not well understood. We evaluated how seasonal NSC concentrations varied with plant water status (predawn xylem water potential, Ψ) and air temperature (T) in the evergreen desert shrub Larrea tridentata. Aboveground sugar and starch concentrations were measured weekly or monthly for ~1.5 years on 6-12 shrubs simultaneously instrumented with automated stem psychrometers; leaf photosynthesis (Anet ) was measured monthly for 1 year. Leaf sugar increased during the dry, premonsoon period, associated with lower Ψ (greater water stress) and high T. Leaf sugar accumulation coincided with declines in leaf starch and stem sugar, suggesting the prioritization of leaf sugar during low photosynthetic uptake. Leaf starch was strongly correlated with Anet and peaked during the spring and monsoon seasons, while stem starch remained relatively constant except for depletion during the monsoon. Recent photosynthate appeared sufficient to support spring growth, while monsoon growth required the remobilization of stem starch reserves. The coordinated responses of different NSC fractions to water status, photosynthesis, and growth demands suggest that NSCs serve multiple functions under extreme environmental conditions, including severe drought.


Asunto(s)
Carbohidratos/química , Clima Desértico , Larrea/fisiología , Tallos de la Planta/fisiología , Temperatura , Agua/metabolismo , Fotosíntesis , Estaciones del Año , Factores de Tiempo
19.
Ecotoxicol Environ Saf ; 187: 109843, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31678701

RESUMEN

Polycyclic aromatic hydrocarbons (PAH) contained in creosote oil are particularly difficult to remove from the soil environment. Their hydrophobic character and low bioavailability to soil microorganisms affects their rate of biodegradation. This study was performed on samples of soil that were (for over forty years) subjected to contamination with creosote oil, and their metagenome and physicochemical properties were characterized. Moreover, the study was undertaken to evaluate the biodegradation of PAHs by autochthonous consortia as well as by selected bacteria strains isolated from long-term contaminated industrial soil. From among the isolated microorganisms, the most effective in biodegrading the contaminants were the strains Pseudomonas mendocina and Brevundimonas olei. They were able to degrade more than 60% of the total content of PAHs during a 28-day test. The biodegradation of these compounds using AT7 dispersant was enhanced only by Serratia marcescens strain. Moreover, the addition of AT7 improved the effectiveness of fluorene and acenaphthene biodegradation by Serratia marcescens 6-fold. Our results indicated that long-term contact with aromatic compounds induced the bacterial strains to use the PAHs as a source of carbon and energy. We observed that supplementation with surfactants does not increase the efficiency of hydrocarbon biodegradation.


Asunto(s)
Caulobacteraceae/aislamiento & purificación , Creosota/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Pseudomonas mendocina/aislamiento & purificación , Microbiología del Suelo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Caulobacteraceae/metabolismo , Monitoreo del Ambiente , Industrias , Polonia , Pseudomonas mendocina/metabolismo , Suelo/química
20.
Environ Res ; 181: 108877, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31722805

RESUMEN

OBJECTIVES: Coal tar creosote oils are used as highly effective wood protectants for, e.g., railway sleepers, utility poles and marine pilings. For impregnation of wood, the hot creosote oil is mostly applied in vacuum processes and by hot-and-cold dipping. From the perspective of an occupational hygienist, creosote tar oils are problematic because they have a number of hazardous properties, including carcinogenicity. We have studied inhalation and dermal exposure in six and four impregnation plants, respectively, in Germany. Some plants were visited repeatedly, for up to five measurement campaigns conducted over several years. Inhalation and dermal exposure resulting from vacuum impregnation and from hot-and-cold dipping, as well as secondary exposure resulting from assembly of impregnated railway sleepers have been measured. Accompanying, human biomonitoring of the employees has been performed. METHODS: Inhalation exposure was measured using personal air samplers, collecting particles and vapours simultaneously. Dermal exposure was investigated by whole body dosimetry using disposable chemical protective coveralls and split leather gloves. 18 polycyclic aromatic hydrocarbons (PAHs) have been determined separately by high performance liquid chromatography (HPLC) or gas chromatography-mass spectrometry (GC-MS), respectively. For human biomonitoring 1-hydroxypyrene (1-OHP) in urine related to creatinine has been measured using HPLC. Both, pre- and post-shift values have been determined for this metabolite. RESULTS: Dermal exposure towards pyrene and the sum of the determined 18 PAHs as well as inhalation exposure to naphthalene, pyrene and the sum of the determined 18 PAHs are presented in this paper. The plants performing vacuum impregnation have employed different constructive, technical and organisational measures, and some measures have also changed between the different measurement campaigns. We have found that cooling the vacuum impregnation vessel before unloading can reduce inhalation exposure to about one-third. However, our data shows that installation of structural or technical risk management measures (RMM) did not always reduce the exposure as intended, and can even lead to increased exposure in adverse constellations. Dermal exposure was strongly affected by differences in the working procedures. Measurements performed during assembly of impregnated railway sleepers indicate that secondary exposure leads to lower inhalation, but similar dermal exposure compared to the impregnation processes. Also 1-OHP excretion rates are similar after impregnation process and after assembly of impregnated railway sleepers. CONCLUSION: Our recent data underlines that efficient reduction of the exposure resulting from impregnation with creosote requires sophisticated risk reduction strategies. Structural measures such as the enclosure of the loading area and technical measures like local exhaust ventilation shall be coordinated carefully with organisational measures and provision of personal protective equipment. The data presented here represents a broad bandwidth of current workplace situations in the creosote oil processing industry and is therefore suitable for risk assessment in related plants as well as under regulatory frameworks like the European Biocides Regulation. Each plant in this investigation was unique. Together they represent the whole width of this branch in Germany. Additionally, the number of plants and exposed workers is limited and relative low. Therefore, a comprehensive consideration and statistical analysis were not feasible.


Asunto(s)
Creosota , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Madera , Monitoreo del Ambiente , Alemania , Humanos , Exposición por Inhalación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA