Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125194

RESUMEN

Currently, there are limitations in the research on the use of carbon fiber geogrids to prevent low-temperature cracking in asphalt pavements. This study aims to comparatively investigate the effects of carbon fiber-based geogrid type and dense-graded asphalt concrete mixture (AC) surface combined body (SCB) type on the low-temperature cracking resistance of reinforced asphalt pavement through low-temperature bending damage tests. Two geogrid types were prepared: a carbon fiber geogrid (CCF) and a glass/carbon fiber composite qualified geogrid (GCF). Two SCB types were studied: AC-13/AC-20 and AC-20/AC-25. The results show that the improvement in the flexural tensile strength of CCF is similar to that for GCF. Moreover, under reinforced conditions, the improvement in the low-temperature cracking resistance of AC-20/AC-25 is better than that for AC-13/AC-20 by 16.26-24.57%. Based on the analysis, the reasonable ratio range of the aperture sizes to the major particle sizes in the dense gradation can achieve a more effective interlocking effect. This can improve the low-temperature cracking resistance of carbon fiber-based geogrid-reinforced samples. Then, increasing the bending absorption energy is a key way of improving the low-temperature cracking resistance of carbon fiber-based geogrid reinforcements. Eventually, the fracture type of carbon fiber-based geogrid-reinforced samples is a mixed plastic-brittle fracture. These results can provide a reference for the road failure analysis of geogrid-reinforced asphalt pavement.

2.
Chemistry ; : e202401926, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015026

RESUMEN

The aim is to determine the effect of polymer density, correlated to the comonomer content, and nanosilica addition on the mechanical and Environmental Stress Cracking Resistance (ESCR) characteristics of high-density polyethylene (HDPE). In this regard, five HDPE samples with similar Melt Flow Index (MFI) and molar mass but various densities were acquired from a petrochemical plant. Two polymerization reactors work in series and differ only in the amount of 1-buene comonomer fed to the second reactor. To ascertain the microstructure of the studied samples, GPC and SSA (successive self-nucleation and annealing) analyses were accomplished. All samples resulted having similar characteristics but slightly various SCB/1000C=7.26-9.74 (SCB=Short Chain Branching). Consequently, meanwhile studied HDPEs reveal similar notched impact and stress at yield values, the tensile modulus, stress-at-break, and elongation-at-break tend to demonstrate different results with the SCB content. More significantly, ESCR characteristic varied considerably with SCB/1000C extent, so that higher amount of SCB acknowledged advanced ESCR. Notably, blending HDPE sample containing higher amount of SCB/1000C, with 3 wt.% of chemically modified nanosilica enhanced ESCR characteristic by 40%. DFT (Density Functional Theory) calculations unveiled the role of the comonomer, quantitatively by binding energies and qualitatively by Non Covalent Interaction (NCI) plots.

3.
Polymers (Basel) ; 16(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675077

RESUMEN

As internal curing self-healing agents in concrete repair, the basic properties of superabsorbent polymers (SAPs), such as water absorption and release properties, are generally affected by several factors, including temperature and humidity solution properties and SAP particle size, which regulate the curing effect and the durability of cementitious composites. This study aimed to investigate the water retention capacities of SAPs in an alkaline environment over extended periods by incorporating liquid sodium silicate (SS) into SAP-water mixtures and examining the influence of temperature. The influence of SAP particle size on mortar's water absorption capacity and mechanical behavior was investigated. Two mixing techniques for SAPs (dry and pre-wetting) were employed to assess the influence of SAP on cement mortars' slump, mechanical properties, and cracking resistance. Four types of SAPs (SAP-a, SAP-b, SAP-c, and SAP-d), based on the molecular chains and particle size, were mixed with SS to study their water absorption over 30 days. The results showed that SAPs exhibit rapid water absorption within the first 30 min, exceeding 85% before reaching a saturation point, and the chemical and temperature variations in the water significantly affected water absorption and desorption. The filtration results revealed that SAP-d exhibited the slowest water release rate, retaining water for considerably longer than the other three types of SAPs. The mechanical properties of SAP mortar were reduced due to the addition of an SAP and the improved cracking resistance of the cement mortars.

4.
Materials (Basel) ; 17(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673121

RESUMEN

In the context of green and low-carbon development, energy saving, and emission reduction, hot recycling technology (RT) has been researched, which is divided into hot central plant RT and hot in-place RT. However, due to the aged asphalt binders, the shortcomings of hot recycled asphalt mixtures have become apparent, as in comparison to new asphalt mixtures, their resistance to cracking was inferior and the cracking resistance deteriorated more rapidly. Therefore, it was very necessary to focus on the improvement of crack resistance of hot recycled asphalt mixtures. Basalt fiber has been proved to be able to effectively improve the comprehensive road performance of new asphalt mixtures. Therefore, this paper introduced basalt fiber to hot central plant recycled and hot in-place recycled asphalt mixtures, in order to improve the crack resistance of asphalt as a new type of fiber stabilizer. Firstly, six types of SMA-13 fiber asphalt mixtures were designed and prepared, i.e., hot mixtures with basalt fiber or lignin fiber, hot central plant recycled mixtures with basalt fiber or lignin fiber, and hot in-place recycled mixtures with basalt fiber or lignin fiber. Secondly, the trabecular bending test, low-temperature creep test, semi-circular bending test, and IDEAL-CT were used to comparatively study the changing patterns of low and intermediate temperature cracking resistance of hot recycled mixtures with conventional lignin fibers or basalt fibers. Finally, Pearson's correlation coefficient was used to analyze the correlation of the different cracking resistance indicators. The results show that the low and intermediate temperature cracking resistance of hot central plant recycled mixtures increased by 45.6% (dissipative energy ratio, Wd/Ws) and 74.8% (flexibility index, FI), respectively. And the corresponding cracking resistance of hot in-place recycled mixture increased by 105.4% (Wd/Ws) and 55.7% (FI). The trabecular bending test was more suitable for testing the low-temperature cracking resistance of hot recycled asphalt mixtures, while the IDEAL-CT was more suitable for testing the intermediate-temperature cracking resistance. The results can provide useful references for the utilization of basalt fiber in the hot recycling of SMA-13 asphalt mixtures.

5.
Materials (Basel) ; 16(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959422

RESUMEN

Many researchers use fiber to improve the cracking resistance of asphalt mixtures, but research concerning the effects of fiber on fracture behavior is limited. The fracture behavior of asphalt mixtures with various fiber types (basalt fiber, glass fiber, and polyester fiber) and contents (0.1%, 0.2%, 0.3%, 0.4%, and 0.5%) has been studied using the indirect tensile asphalt cracking test (IDEAL-CT) in conjunction with digital image correlation (DIC) technology. The evaluation indexes used in the test included crack initiation energy (Gif), crack energy (Gf), splitting tensile strength (RT), cracking tolerance index (CTindex), and the real-time tensile strain (Exx) obtained using digital image correlation technology. The results showed that despite the fiber type, the increase of fiber content resulted in first, an increase, and then, a decrease of the cracking resistance of asphalt mixtures, indicating the presence of optimum fiber content-specifically, 0.4%, 0.3%, and 0.3% for basalt fiber, glass fiber, and polyester fiber, respectively. The development of real-time tensile strain, obtained based on digital image correlation technology, could be divided into two stages: slow-growth stage and rapid-expansion stage. In addition, asphalt mixture with basalt fiber presented the best cracking resistance at both the slow-growth and rapid-expansion stages. This research is helpful in understanding the effects of fiber type and content on the fracture behavior of asphalt mixtures and has certain reference significance for the application of fiber in asphalt mixtures.

6.
Materials (Basel) ; 16(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36837243

RESUMEN

In the maintenance engineering of asphalt pavement, it is often encountered that both the surface and middle layers are damaged and need to be maintained. The cold in-place recycling technology can be used to simultaneously treat multi-layer diseases and reduce the waste of pavement materials. The cold in-place recycling mixture is rarely used for high layer of pavement structure in high-grade highway. In the supporting practical engineering, the emulsified asphalt cold in-place recycling mixtures were paved as the middle layer of pavement structure by the laying of an overlay. In order to comprehensively evaluate the material performances, coring samples were drilled after cold recycling pavement opening to traffic, and different performance tests were carried out based on the coring samples. The newly paved SMA mixtures were set as the control group. The high temperature stability of cold recycling mixture was analyzed by dynamic creep test and MMLS3 accelerated loading test. Then, the cracking resistance of cold recycling mixture was studied by semi-circular bending test. Finally, the effect of curing time on splitting strength of cold recycling mixture was measured, and the moisture susceptibility was analyzed by dry-wet splitting test and freeze-thaw splitting test. The test results showed that the high temperature stability of cold recycling mixture was worse than SMA mixture. For the cold recycling mixture, the deformation value at the early stage and deformation rate at the stable stage were larger than SMA mixture in the accelerated loading process, and shear failure at high temperature occurred earlier. The cracking resistance of cold recycling mixture was worse than SMA mixture because of the aging effect of the old asphalt and adverse influence of the added cement binder. The effect of curing time on splitting strength of cold recycling mixture was significant, and two stable periods of early strength were, respectively, reached after curing 3 days and 7 days. The indexes of moisture susceptibility, including dry-wet splitting strength ratio and freeze-thaw splitting strength ratio, were obviously lower than that of SMA mixture, and the test values not up to the standard requirement existed. For the emulsified asphalt cold in-place recycling mixture, the improvement of material performances should be focused on, especially the moisture susceptibility. In the research, the emulsified asphalt cold in-place recycling mixtures were acceptably used as the middle layer of maintenance pavement structure. The reliable discussions were summarized based on coring samples collected from real-life road sections. The case can provide guidance and reference for similar engineering applications.

7.
Materials (Basel) ; 16(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36770306

RESUMEN

This study examined the effects of the laboratory mixer type and mixing time on a hot-mix asphalt (HMA) using three different types of mixers and four different mixing times. The asphalt mix used is a semi-open graded mix (ESG-10) with 30% reclaimed asphalt pavement (RAP), and a range of tests were conducted including bitumen extraction by ignition, particle size distribution, maximum specific gravity (Gmm), a SUPERPAVE gyratory compactor (SGC), bulk specific gravity (Gmb), indirect tensile stiffness modulus (ITSM), and indirect tensile strength (IDT). The statistical analysis of variance (ANOVA) was also applied to quantify the effect of mixer type and mixing time. The results indicated that both mixing type and time had a significant effect on the properties of the HMA (volumetric properties and compactability) and that the type of mixer used also affected the performance of the HMA (stiffness and cracking resistance), with some mixers producing asphalt mixes with better properties than others. The study ultimately demonstrated that it is possible to produce a mix that exhibits good performance and meets or does not meet the compactability specifications depending on the mixer type used.

8.
Materials (Basel) ; 16(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36676236

RESUMEN

In China, MgO-based expansive agent (MEA) has been used for concrete shrinkage compensation and cracking control for over 40 years. The expansive behavior of MEA in cementitious materials could be manipulated to some extent by adjusting the calcination process of MEA and influenced by the restraint condition of the matrix. It is key to investigate the factors related to deformation and cracking resistance so that the desired performance of MEA in certain concrete structures could be achieved. This paper reviews the influence of key parameters such as hydration reactivity, dosage, and calcination conditions of MEA, the water-to-binder ratio, supplementary cementitious material, aggregates, and curing conditions on the deformation and cracking resistivity of cement paste, mortar, and concrete with an MEA addition. The numerical simulation methods and deformation prediction models are then summarized and analyzed for more reasonable estimations.

9.
Sci Total Environ ; 865: 161089, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587706

RESUMEN

Weather aging may cause more severe degradation on asphalt than thermal-oxidative aging due to the synergistic effect among oxygen, heat, ultraviolet (UV) radiation, and moisture. This study aimed to investigate weather aging effects and anti-aging mechanisms on asphalt modified with rubber-polyethylene (PE) composites. The modified binder blends and asphalt mixtures were subjected to outdoor weather aging. Dynamic shear rheometer (DSR), Fourier transform infrared spectroscopy (FTIR), Gel permeation chromatography (GPC), and optical microscopy tests were adopted to characterize the rheological properties, aging resistance, polymer degradation, and anti-aging mechanisms of modified binder blends, respectively. Mixture performance tests including Asphalt Pavement Analyzer (APA) and Ideal-CT tests were used to evaluate rutting and cracking resistance of asphalt mixtures. Results showed that weather aging can cause more severe aging to asphalt binders than pressure aging vessel (PAV) due to the severe degradation of PE particles. Rubber-PE composites alloyed with an extruder proved to stabilize PE particles in asphalt and significantly improve the aging resistance of modified binder blends. The enhanced aging resistance is attributed to the dispersion of PE particles and carbon black released by soluble rubbers.

10.
Polymers (Basel) ; 14(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365464

RESUMEN

In order to investigate the effectiveness of polymer modification and fiber reinforcement on the cracking and impact resistance of concrete materials prepared for ultra-thin whitetopping (UTW), carboxyl butyl benzene latex and polyformaldehyde fibers were added to the conventional cement concrete mix. In addition, test methods that used an asphalt mixture performance tester (AMPT) and mechanical rammer were developed to evaluate concrete cracking and impact resistance, respectively. Results from the AMPT test revealed that the cracking resistance can be enhanced with polymer and fiber, especially the initial tensile load peak, which can be improved by more than 40% when fiber and polymer compound modification is applied. Meanwhile, the impact loading test revealed that the inclusion of both fiber and polymer results in a two-fold increase in the number of impacts before visible cracking occurs, and the number of blows to failure increased by 21.4%. Moreover, microstructures were investigated by scanning electron microscopy (SEM) to confirm the reinforcing mechanism of both polymer modification and fiber reinforcement.

11.
Materials (Basel) ; 15(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36143655

RESUMEN

In order to further improve the performance of impregnated paper decorated blockboard (ecological board), high-density fiberboard (HDF) was selected as the equilibrium layer to replace the commonly used poplar veneer. Results showed that the performance of HDF ecological board can be comparable to that of poplar veneer ecological board. It had good appearance quality, and its surface scratch resistance, surface wear resistance, water resistance and mechanical properties met the requirements of National Standard GB/T 34722-2017. The surface cracking resistance of the ecological board prepared with HDF as the equilibrium layer reached the highest level (grade 5), far better than that of the poplar veneer ecological board. This was because HDF was a relatively homogeneous material, and its dry shrinkage in both the transverse direction and along the grain direction was much lower than that of the poplar veneer. This characteristic of HDF made it possible to improve the dimensional stability and bending resistance of blockboard substrates under dry and hot conditions. The formaldehyde emission of the HDF ecological board was higher than that of the poplar veneer ecological board, but it met the formaldehyde emission requirements of indoor materials according to GB 18580-2001.

12.
Polymers (Basel) ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616396

RESUMEN

The transition to a circular economy has a major impact on waste management and the reuse of materials. New mandatory recycling targets for plastics will lead to a high availability of recyclates. For these recyclates, useful applications need to be found. One potential application for recyclates is blow molding bottles as packaging for non-food contents. This study investigates commercially available post-consumer high-density polyethylene recyclates together with virgin blow molding grades in terms of their short-term mechanical properties and environmental stress cracking resistance. While the short-term mechanical properties showed only slightly lower performance than the tested virgin grades, the overall environmental stress cracking failure times of the recyclates were much lower compared to virgin materials, even though the crack-growth kinetics could be similar. Although neither the tensile nor the notched impact strength results of the two polyethylene recyclates revealed large differences, the stress intensity-factor-dependent crack-growth rates of both materials were significantly different.

13.
Materials (Basel) ; 16(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36614631

RESUMEN

Recently, the application of plant fibers to improve the cementitious mix performance has attracted interest in the field of road materials owing to advantages of environmental protection and cost-effectiveness. As a planting crop, corn exhibits the advantages of being a more abundant resource with a wider distribution than those of other plant fibers. In this study, the effect of corn straw fiber on the properties of cement-stabilized macadam (5% cement) was investigated with the fiber length and content as variables. The test results revealed that the addition of a small amount of fiber marginally affects the compression density of cement-stabilized macadam. At a fiber length of 10 mm and a fiber content of 1%, the maximum increase in the compressive strength was 18.8%, and the maximum increase in the splitting strength was 35.4%. Moreover, at a fiber length of 15 mm and a fiber content of 1%, the shrinkage coefficient was reduced by 29%, and the crack resistance of cement-stabilized macadam was enhanced. In addition, the dry-wet cycle durability of cement-stabilized macadam was improved.

14.
Materials (Basel) ; 14(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200845

RESUMEN

This paper aims to better analyze the crack resistance of lignin fiber reinforced SMA-13 (LFSMA-13) asphalt mixtures, with and without polymer anti-rut agent (ARA), under different aging degrees. IDEAL-CT test and Fourier transform infrared (FTIR) spectroscopy were utilized to analyze the relationships between the crack resistance of LFSMA-13, with and without ARA, and the parameters of the FTIR spectrum of the asphalt extracted from the test samples. A convenient testing method to predict the anti-crack ability of the mixtures in a road was also derived in this study. The test samples were prepared using the specifications listed by AASHTO. The fracture formation work (Winitial) and cracking index (CTIndex) in the IDEAL-CT test were adopted to reflect the cracking ability of the asphalt mixtures in both the crack formation stage and the crack propagation stage. The peak areas of the FTIR spectrum were utilized to reveal the chemical properties of the asphalt material inside the SMA-13 asphalt mixtures, with and without ARA under different aging degrees. Grey correlation analysis was adopted to choose the most suitable FTIR spectrum parameters to derive the prediction models of Winitial and CTIndex under different aging degrees. After conducting a series of tests, the results showed that the aging process could well affect the crack resistance of the test samples and the peak areas of the asphalt extracted from the mixtures. The FTIR parameters selected from the grey correlation analysis could be used to well predict the anti-crack ability of the asphalt mixtures.

15.
Materials (Basel) ; 14(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204444

RESUMEN

To evaluate the long-term performances of different polymer-modified asphalt mixtures, three modifiers were chosen to modify AC-13 (defined as the asphalt concrete with the aggregate nominal maximum particle size of 13.2 mm); namely, high viscosity modifier (HVM), high modulus modifier (HMM), and anti-rutting agent (ARA). The deformation and cracking resistance of different polymer-modified mixtures were checked at different aging conditions (unaged, short-term aged, and long-term aged for 5, 10, and 15 days respectively). The results of the Hamburg wheel-track test and uniaxial penetration test (UPT) showed that the rutting resistance of all asphalt mixtures changed in a V-shape as the aging progressed. From the unaged stage to the long-term aging stage (5 days), the rutting resistance decreases gradually. While after the long-term aging stage (5 days), the rutting resistance increases gradually. Results from the semicircular bending test (SCB) and the indirect tensile asphalt cracking test (IDEAL-CT) indicated that the cracking resistance of all the mixtures gradually decline with the deepening of the aging degree, indicating that aging weakens the crack resistance of asphalt mixtures. Additionally, test results showed that the rutting resistance of ARA AC-13 (defined as AC-13 containing ARA) is the best, the cracking resistances of ARA AC-13, HMM AC-13 (defined as AC-13 containing HMM) and HVM AC-13 (defined as AC-13 containing HVM) have no significant difference, and different polymer modifiers had different sensitivities to aging due to the polymer content and the type of modifier. The conclusions of this study help to further understand the long-term performance of polymer-modified asphalt mixtures during service life and to help guide the selection of modifiers for mixtures.

16.
Micron ; 145: 103056, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33740567

RESUMEN

A two-step aging treatment (50 L P, a peak aging following 50 ℃ pre-precipitation) has been investigated for the in-situ TiB2/7050Al composite. The 50 L P composite has the comparable mechanical properties to the composite at peak-aged (T6) state, and even better stress corrosion cracking resistance over the composite with the retrogression and re-aging (RRA) treatment. In detail, the different aging conditions lead to different precipitate morphologies and grain boundary microchemistries. According to the microstructure characteristics in the Al matrix, the 50 L P composite has considerably increased grain boundary precipitate interspace in comparison with the T6 composite, since the lower aging temperature should result in the reduced grain boundary precipitate number. Furthermore, the 50 L P composite has more Cu content in the grain boundary precipitate and reduced precipitate free zone width over the RRA composite, indicating the improved stress corrosion cracking resistance. For the reinforcement, the TiB2 particles should slightly aggravate the stress corrosion cracking susceptibility, since the grain boundary precipitates are still the preferential corrosion sites due to their lower corrosion potentials.

17.
Materials (Basel) ; 13(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081334

RESUMEN

Cold Bitumen Emulsion (CBE) mixture technologies have been recently developed to lower pavement construction temperatures to reduce environmental costs and control gas emissions. Due to its poor early mechanical strength, active fillers (i.e., cement) have been used to obtain high early stiffness in order to have the potential for timely construction of the next layer. There is, however, a lack of understanding about the impact of active fillers on the viscoelastic behavior and fatigue damage resistance of CBE mastics. This study, therefore, aims to identify the influence of active fillers on the rheological properties and the resulting fatigue behavior of CBE mastic, supported by chemical analysis for the filler-bitumen emulsion. For this aim, bitumen emulsion was mixed separately with seven fillers/blended fillers to prepare the CBE mastics. Various experiments, including continuous pH monitoring tests (chemical reactivity of filler-bitumen emulsion), Strain Sweep (SS) tests, Temperature-Frequency Sweep (TFS) tests, Time Sweep (TS) tests, and Linear Amplitude Sweep (LAS) tests were conducted on the CBE binder and the prepared mastics. Results show that the rheological performance and the fatigue damage resistance depend not only on the filler inclusions but also on filler type and chemistry. On this basis, the rise in complex shear modulus and the decrease in the viscous component is associated with a significant enhancement in fatigue performance for specific fillers.

18.
Materials (Basel) ; 13(4)2020 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-32102246

RESUMEN

This article presents a novel potential bio-based rejuvenator derived from waste pig fat (WPF) for use in recycled asphalt applications. To achieve this purpose, the impact of different doses waste pig fat (e.g., 0, 3, 6, and 9 wt.% WPF) on the reclaimed asphalt pavement binder (RAP-B) performance is investigated. The unmodified and WPF-modified asphalts are characterized by means of Fourier-transform infrared spectroscopy (FT-IR), thin-layer chromatography-flame ionization detection (TLC-FID), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Physico-rheological properties of asphalt blends are assessed through Brookfield viscometer, softening point, penetration, and dynamic shear rheometer (DSR) tests. TLC-FID data highlighted that incremental WPF addition into RAP-B restored its original balance maltenes-to-asphaltenes ratio; finding which was supported by FT-IR analysis. SEM disclosed that WPF has a great compatibility with the aged asphalt. AFM observations showed that grease treatment induced a decline in surface roughness (i.e., bee structures) and a rise in friction force (i.e., para-phase dimension) of RAP binder. TGA/DSC studies revealed that the bio-modifier not only possesses an excellent thermal stability but also can substantially enhance the binder low-temperature performance. Empirical and DSR tests demonstrated that WPF improved the low-temperature performance grade of RAP-B, reduced its mixing and compaction temperatures, and noticeably boosted its fatigue cracking resistance. The rejuvenation of aged asphalt employing WPF is feasible and can be an ideal approach to recycle both of RAP and waste pig fats.

19.
Plant Biotechnol J ; 18(4): 1066-1077, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31610078

RESUMEN

Fruit rind plays a pivotal role in alleviating water loss and disease and particularly in cracking resistance as well as the transportability, storability and shelf-life quality of the fruit. High susceptibility to cracking due to low rind hardness is largely responsible for severe annual yield losses of fresh fruits such as watermelon in the field and during the postharvest process. However, the candidate gene controlling the rind hardness phenotype remains unclear to date. Herein, we report, for the first time, an ethylene-responsive transcription factor 4 (ClERF4) associated with variation in rind hardness via a combinatory genetic map with bulk segregant analysis (BSA). Strikingly, our fine-mapping approach revealed an InDel of 11 bp and a neighbouring SNP in the ClERF4 gene on chromosome 10, conferring cracking resistance in F2 populations with variable rind hardness. Furthermore, the concomitant kompetitive/competitive allele-specific PCR (KASP) genotyping data sets of 104 germplasm accessions strongly supported candidate ClERF4 as a causative gene associated with fruit rind hardness variability. In conclusion, our results provide new insight into the underlying mechanism controlling rind hardness, a desirable trait in fresh fruit. Moreover, the findings will further enable the molecular improvement of fruit cracking resistance in watermelon via precisely targeting the causative gene relevant to rind hardness, ClERF4.


Asunto(s)
Citrullus/genética , Etilenos , Frutas , Proteínas de Plantas/genética , Proteínas Represoras/genética , Dureza , Fenotipo
20.
R Soc Open Sci ; 6(11): 190105, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31827815

RESUMEN

Round bamboo has drawn more and more attention in architecture, decoration and recreational products. Splitting brings some safety problems, which shorten the service life of round bamboo. In this paper, three schemes were adopted as follows to solve the problem: round bamboo was impregnated in polyethylene glycol (PEG)-1000 solution alone, heat treatment in paraffin alone or treated with the combination of PEG impregnation and paraffin heat treatment (PEG-PH). The treated bamboo was exposed outdoors for 26 weeks to evaluate the development of cracks. Results showed as follows: the initial split of PEG-PH-treated bamboo appeared after 22 weeks, while that of the controls after 2 weeks, the total length of cracks was 2271.31 and 873.5 mm for the control and PEG-PH-treated bamboo, respectively. To reveal the reasons for reduced cracks, scanning electron micrograph (SEM) was employed to observe the microstructure of bamboo; besides, hydrophobicity of bamboo was characterized by the water contact angle. PEG can swell the cell wall and the better hydrophobicity of round bamboo could be achieved after PEG-PH treatment. Therefore, the combination of PEG immersion and paraffin heating is an effective and practicable method in bamboo treatment, especially for round bamboo with high moisture content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA