Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biometrics ; 80(1)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38465982

RESUMEN

In many modern machine learning applications, changes in covariate distributions and difficulty in acquiring outcome information have posed challenges to robust model training and evaluation. Numerous transfer learning methods have been developed to robustly adapt the model itself to some unlabeled target populations using existing labeled data in a source population. However, there is a paucity of literature on transferring performance metrics, especially receiver operating characteristic (ROC) parameters, of a trained model. In this paper, we aim to evaluate the performance of a trained binary classifier on unlabeled target population based on ROC analysis. We proposed Semisupervised Transfer lEarning of Accuracy Measures (STEAM), an efficient three-step estimation procedure that employs (1) double-index modeling to construct calibrated density ratio weights and (2) robust imputation to leverage the large amount of unlabeled data to improve estimation efficiency. We establish the consistency and asymptotic normality of the proposed estimator under the correct specification of either the density ratio model or the outcome model. We also correct for potential overfitting bias in the estimators in finite samples with cross-validation. We compare our proposed estimators to existing methods and show reductions in bias and gains in efficiency through simulations. We illustrate the practical utility of the proposed method on evaluating prediction performance of a phenotyping model for rheumatoid arthritis (RA) on a temporally evolving EHR cohort.


Asunto(s)
Aprendizaje Automático , Aprendizaje Automático Supervisado , Humanos , Curva ROC , Proyectos de Investigación , Sesgo
2.
Accid Anal Prev ; 199: 107526, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432064

RESUMEN

Drivers who perform frequent high-risk events (e.g., hard braking maneuvers) pose a significant threat to traffic safety. Existing studies commonly estimated high-risk event occurrence probabilities based upon the assumption that data collected from different time periods are independent and identically distributed (referred to as i.i.d. assumption). Such approach ignored the issue of driving behavior temporal covariate shift, where the distributions of driving behavior factors vary over time. To fill the gap, this study targets at obtaining time-invariant driving behavior features and establishing their relationships with high-risk event occurrence probability. Specifically, a generalized modeling framework consisting of distribution characterization (DC) and distribution matching (DM) modules was proposed. The DC module split the whole dataset into several segments with the largest distribution gaps, while the DM module identified time-invariant driving behavior features through learning common knowledge among different segments. Then, gated recurrent unit (GRU) was employed to conduct time-invariant driving behavior feature mining for high-risk event occurrence probability estimation. Moreover, modified loss functions were introduced for imbalanced data learning caused by the rarity of high-risk events. The empirical analyses were conducted utilizing online ride-hailing services data. Experiment results showed that the proposed generalized modeling framework provided a 7.2% higher average precision compared to the traditional i.i.d. assumption based approach. The modified loss functions further improved the model performance by 3.8%. Finally, benefits for the driver management program improvement have been explored by a case study, demonstrating a 33.34% enhancement in the identification precision of high-risk event prone drivers.


Asunto(s)
Accidentes de Tránsito , Conocimiento , Humanos , Accidentes de Tránsito/prevención & control , Aprendizaje , Probabilidad
3.
BMC Med Inform Decis Mak ; 24(1): 34, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308256

RESUMEN

BACKGROUND: Concept drift and covariate shift lead to a degradation of machine learning (ML) models. The objective of our study was to characterize sudden data drift as caused by the COVID pandemic. Furthermore, we investigated the suitability of certain methods in model training to prevent model degradation caused by data drift. METHODS: We trained different ML models with the H2O AutoML method on a dataset comprising 102,666 cases of surgical patients collected in the years 2014-2019 to predict postoperative mortality using preoperatively available data. Models applied were Generalized Linear Model with regularization, Default Random Forest, Gradient Boosting Machine, eXtreme Gradient Boosting, Deep Learning and Stacked Ensembles comprising all base models. Further, we modified the original models by applying three different methods when training on the original pre-pandemic dataset: (Rahmani K, et al, Int J Med Inform 173:104930, 2023) we weighted older data weaker, (Morger A, et al, Sci Rep 12:7244, 2022) used only the most recent data for model training and (Dilmegani C, 2023) performed a z-transformation of the numerical input parameters. Afterwards, we tested model performance on a pre-pandemic and an in-pandemic data set not used in the training process, and analysed common features. RESULTS: The models produced showed excellent areas under receiver-operating characteristic and acceptable precision-recall curves when tested on a dataset from January-March 2020, but significant degradation when tested on a dataset collected in the first wave of the COVID pandemic from April-May 2020. When comparing the probability distributions of the input parameters, significant differences between pre-pandemic and in-pandemic data were found. The endpoint of our models, in-hospital mortality after surgery, did not differ significantly between pre- and in-pandemic data and was about 1% in each case. However, the models varied considerably in the composition of their input parameters. None of our applied modifications prevented a loss of performance, although very different models emerged from it, using a large variety of parameters. CONCLUSIONS: Our results show that none of our tested easy-to-implement measures in model training can prevent deterioration in the case of sudden external events. Therefore, we conclude that, in the presence of concept drift and covariate shift, close monitoring and critical review of model predictions are necessary.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , Algoritmos , Mortalidad Hospitalaria , Aprendizaje Automático
4.
Biostatistics ; 25(2): 289-305, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36977366

RESUMEN

Causally interpretable meta-analysis combines information from a collection of randomized controlled trials to estimate treatment effects in a target population in which experimentation may not be possible but from which covariate information can be obtained. In such analyses, a key practical challenge is the presence of systematically missing data when some trials have collected data on one or more baseline covariates, but other trials have not, such that the covariate information is missing for all participants in the latter. In this article, we provide identification results for potential (counterfactual) outcome means and average treatment effects in the target population when covariate data are systematically missing from some of the trials in the meta-analysis. We propose three estimators for the average treatment effect in the target population, examine their asymptotic properties, and show that they have good finite-sample performance in simulation studies. We use the estimators to analyze data from two large lung cancer screening trials and target population data from the National Health and Nutrition Examination Survey (NHANES). To accommodate the complex survey design of the NHANES, we modify the methods to incorporate survey sampling weights and allow for clustering.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Encuestas Nutricionales , Neoplasias Pulmonares/epidemiología , Simulación por Computador , Proyectos de Investigación
5.
J Comput Graph Stat ; 32(3): 1036-1045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37997592

RESUMEN

Individualized treatment effect lies at the heart of precision medicine. Interpretable individualized treatment rules (ITRs) are desirable for clinicians or policymakers due to their intuitive appeal and transparency. The gold-standard approach to estimating the ITRs is randomized experiments, where subjects are randomized to different treatment groups and the confounding bias is minimized to the extent possible. However, experimental studies are limited in external validity because of their selection restrictions, and therefore the underlying study population is not representative of the target real-world population. Conventional learning methods of optimal interpretable ITRs for a target population based only on experimental data are biased. On the other hand, real-world data (RWD) are becoming popular and provide a representative sample of the target population. To learn the generalizable optimal interpretable ITRs, we propose an integrative transfer learning method based on weighting schemes to calibrate the covariate distribution of the experiment to that of the RWD. Theoretically, we establish the risk consistency for the proposed ITR estimator. Empirically, we evaluate the finite-sample performance of the transfer learner through simulations and apply it to a real data application of a job training program.

6.
BMC Med Inform Decis Mak ; 23(1): 67, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046259

RESUMEN

BACKGROUND: Machine-learning models are susceptible to external influences which can result in performance deterioration. The aim of our study was to elucidate the impact of a sudden shift in covariates, like the one caused by the Covid-19 pandemic, on model performance. METHODS: After ethical approval and registration in Clinical Trials (NCT04092933, initial release 17/09/2019), we developed different models for the prediction of perioperative mortality based on preoperative data: one for the pre-pandemic data period until March 2020, one including data before the pandemic and from the first wave until May 2020, and one that covers the complete period before and during the pandemic until October 2021. We applied XGBoost as well as a Deep Learning neural network (DL). Performance metrics of each model during the different pandemic phases were determined, and XGBoost models were analysed for changes in feature importance. RESULTS: XGBoost and DL provided similar performance on the pre-pandemic data with respect to area under receiver operating characteristic (AUROC, 0.951 vs. 0.942) and area under precision-recall curve (AUPR, 0.144 vs. 0.187). Validation in patient cohorts of the different pandemic waves showed high fluctuations in performance from both AUROC and AUPR for DL, whereas the XGBoost models seemed more stable. Change in variable frequencies with onset of the pandemic were visible in age, ASA score, and the higher proportion of emergency operations, among others. Age consistently showed the highest information gain. Models based on pre-pandemic data performed worse during the first pandemic wave (AUROC 0.914 for XGBoost and DL) whereas models augmented with data from the first wave lacked performance after the first wave (AUROC 0.907 for XGBoost and 0.747 for DL). The deterioration was also visible in AUPR, which worsened by over 50% in both XGBoost and DL in the first phase after re-training. CONCLUSIONS: A sudden shift in data impacts model performance. Re-training the model with updated data may cause degradation in predictive accuracy if the changes are only transient. Too early re-training should therefore be avoided, and close model surveillance is necessary.


Asunto(s)
COVID-19 , Humanos , Pandemias , Algoritmos , Redes Neurales de la Computación , Aprendizaje Automático
7.
Biometrics ; 79(3): 2382-2393, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36385607

RESUMEN

We propose methods for estimating the area under the receiver operating characteristic (ROC) curve (AUC) of a prediction model in a target population that differs from the source population that provided the data used for original model development. If covariates that are associated with model performance, as measured by the AUC, have a different distribution in the source and target populations, then AUC estimators that only use data from the source population will not reflect model performance in the target population. Here, we provide identification results for the AUC in the target population when outcome and covariate data are available from the sample of the source population, but only covariate data are available from the sample of the target population. In this setting, we propose three estimators for the AUC in the target population and show that they are consistent and asymptotically normal. We evaluate the finite-sample performance of the estimators using simulations and use them to estimate the AUC in a nationally representative target population from the National Health and Nutrition Examination Survey for a lung cancer risk prediction model developed using source population data from the National Lung Screening Trial.


Asunto(s)
Modelos Estadísticos , Curva ROC , Encuestas Nutricionales , Área Bajo la Curva
8.
Biostatistics ; 24(3): 728-742, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35389429

RESUMEN

Prediction models are often built and evaluated using data from a population that differs from the target population where model-derived predictions are intended to be used in. In this article, we present methods for evaluating model performance in the target population when some observations are right censored. The methods assume that outcome and covariate data are available from a source population used for model development and covariates, but no outcome data, are available from the target population. We evaluate the finite sample performance of the proposed estimators using simulations and apply the methods to transport a prediction model built using data from a lung cancer screening trial to a nationally representative population of participants eligible for lung cancer screening.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares , Humanos , Modelos Estadísticos , Simulación por Computador
9.
Am J Epidemiol ; 192(2): 296-304, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872598

RESUMEN

We considered methods for transporting a prediction model for use in a new target population, both when outcome and covariate data for model development are available from a source population that has a different covariate distribution compared with the target population and when covariate data (but not outcome data) are available from the target population. We discuss how to tailor the prediction model to account for differences in the data distribution between the source population and the target population. We also discuss how to assess the model's performance (e.g., by estimating the mean squared prediction error) in the target population. We provide identifiability results for measures of model performance in the target population for a potentially misspecified prediction model under a sampling design where the source and the target population samples are obtained separately. We introduce the concept of prediction error modifiers that can be used to reason about tailoring measures of model performance to the target population. We illustrate the methods in simulated data and apply them to transport a prediction model for lung cancer diagnosis from the National Lung Screening Trial to the nationally representative target population of trial-eligible individuals in the National Health and Nutrition Examination Survey.


Asunto(s)
Modelos Teóricos , Encuestas Nutricionales , Humanos , Neoplasias Pulmonares/diagnóstico
10.
J R Stat Soc Series B Stat Methodol ; 85(5): 1680-1705, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38312527

RESUMEN

Predicting sets of outcomes-instead of unique outcomes-is a promising solution to uncertainty quantification in statistical learning. Despite a rich literature on constructing prediction sets with statistical guarantees, adapting to unknown covariate shift-a prevalent issue in practice-poses a serious unsolved challenge. In this article, we show that prediction sets with finite-sample coverage guarantee are uninformative and propose a novel flexible distribution-free method, PredSet-1Step, to efficiently construct prediction sets with an asymptotic coverage guarantee under unknown covariate shift. We formally show that our method is asymptotically probably approximately correct, having well-calibrated coverage error with high confidence for large samples. We illustrate that it achieves nominal coverage in a number of experiments and a data set concerning HIV risk prediction in a South African cohort study. Our theory hinges on a new bound for the convergence rate of the coverage of Wald confidence intervals based on general asymptotically linear estimators.

11.
Front Comput Neurosci ; 17: 1296897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250245

RESUMEN

The excellent performance of deep neural networks on image classification tasks depends on a large-scale high-quality dataset. However, the datasets collected from the real world are typically biased in their distribution, which will lead to a sharp decline in model performance, mainly because an imbalanced distribution results in the prior shift and covariate shift. Recent studies have typically used a two-stage learning method consisting of two rebalancing strategies to solve these problems, but the combination of partial rebalancing strategies will damage the representational ability of the networks. In addition, the two-stage learning method is of little help in addressing the problem of covariate shift. To solve the above two issues, we first propose a sample logit-aware reweighting method called (SLA), which can not only repair the weights of majority class hard samples and minority class samples but will also integrate with logit adjustment to form a stable two-stage learning strategy. Second, to solve the covariate shift problem, inspired by ensemble learning, we propose a multi-domain expert specialization model, which can achieve a more comprehensive decision by averaging expert classification results from multiple different domains. Finally, we combine SLA and logit adjustment into a two-stage learning method and apply our model to the CIFAR-LT and ImageNet-LT datasets. Compared with the most advanced methods, our experimental results show excellent performance.

12.
Front Artif Intell ; 5: 927676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034594

RESUMEN

We propose a direct domain adaptation (DDA) approach to enrich the training of supervised neural networks on synthetic data by features from real-world data. The process involves a series of linear operations on the input features to the NN model, whether they are from the source or target distributions, as follows: (1) A cross-correlation of the input data (i.e., images) with a randomly picked sample pixel (or pixels) of all images from the input or the mean of all randomly picked sample pixel (or pixels) of all input images. (2) The convolution of the resulting data with the mean of the autocorrelated input images from the other domain. In the training stage, as expected, the input images are from the source distribution, and the mean of auto-correlated images are evaluated from the target distribution. In the inference/application stage, the input images are from the target distribution, and the mean of auto-correlated images are evaluated from the source distribution. The proposed method only manipulates the data from the source and target domains and does not explicitly interfere with the training workflow and network architecture. An application that includes training a convolutional neural network on the MNIST dataset and testing the network on the MNIST-M dataset achieves a 70% accuracy on the test data. A principal component analysis (PCA), as well as t-SNE, shows that the input features from the source and target domains, after the proposed direct transformations, share similar properties along the principal components as compared to the original MNIST and MNIST-M input features.

13.
Stat Comput ; 32(3): 39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35582000

RESUMEN

Prediction models often fail if train and test data do not stem from the same distribution. Out-of-distribution (OOD) generalization to unseen, perturbed test data is a desirable but difficult-to-achieve property for prediction models and in general requires strong assumptions on the data generating process (DGP). In a causally inspired perspective on OOD generalization, the test data arise from a specific class of interventions on exogenous random variables of the DGP, called anchors. Anchor regression models, introduced by Rothenhäusler et al. (J R Stat Soc Ser B 83(2):215-246, 2021. 10.1111/rssb.12398), protect against distributional shifts in the test data by employing causal regularization. However, so far anchor regression has only been used with a squared-error loss which is inapplicable to common responses such as censored continuous or ordinal data. Here, we propose a distributional version of anchor regression which generalizes the method to potentially censored responses with at least an ordered sample space. To this end, we combine a flexible class of parametric transformation models for distributional regression with an appropriate causal regularizer under a more general notion of residuals. In an exemplary application and several simulation scenarios we demonstrate the extent to which OOD generalization is possible.

14.
J Am Stat Assoc ; 116(534): 690-693, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483404

RESUMEN

We discuss the results on improving the generalizability of individualized treatment rule following the work in Kallus [1] and Mo et al. [5]. We note that the advocated weights in Kallus [1] are connected to the efficient score of the contrast function. We further propose a likelihood-ratio-based method (LR-ITR) to accommodate covariate shifts, and compare it to the CTE-DR-ITR method proposed in Mo et al. [5]. We provide the upper-bound on the risk function of the target population when both the covariate shift and the contrast function shift are present. Numerical studies show that LR-ITR can outperform CTE-DR-ITR when there is only covariate shift.

15.
Sensors (Basel) ; 21(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066595

RESUMEN

EEG-based deep learning models have trended toward models that are designed to perform classification on any individual (cross-participant models). However, because EEG varies across participants due to non-stationarity and individual differences, certain guidelines must be followed for partitioning data into training, validation, and testing sets, in order for cross-participant models to avoid overestimation of model accuracy. Despite this necessity, the majority of EEG-based cross-participant models have not adopted such guidelines. Furthermore, some data repositories may unwittingly contribute to the problem by providing partitioned test and non-test datasets for reasons such as competition support. In this study, we demonstrate how improper dataset partitioning and the resulting improper training, validation, and testing of a cross-participant model leads to overestimated model accuracy. We demonstrate this mathematically, and empirically, using five publicly available datasets. To build the cross-participant models for these datasets, we replicate published results and demonstrate how the model accuracies are significantly reduced when proper EEG cross-participant model guidelines are followed. Our empirical results show that by not following these guidelines, error rates of cross-participant models can be underestimated between 35% and 3900%. This misrepresentation of model performance for the general population potentially slows scientific progress toward truly high-performing classification models.


Asunto(s)
Electroencefalografía , Individualidad , Humanos
16.
Neurocomputing (Amst) ; 343: 154-166, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32226230

RESUMEN

The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, which poses great difficulty for developments of online adaptive data-driven systems. Ensemble learning approaches have been used previously to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while increasing high computational cost. This paper presents a novel integration of covariate shift estimation and unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) related EEG classification. The proposed method first employs an exponentially weighted moving average model to detect the covariate shifts in the common spatial pattern features extracted from MI related brain responses. Then, a classifier ensemble was created and updated over time to account for changes in streaming input data distribution wherein new classifiers are added to the ensemble in accordance with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed method was extensively compared with the state-of-the-art single-classifier based passive scheme, single-classifier based active scheme and ensemble based passive schemes. The experimental results show that the proposed active scheme based ensemble learning algorithm significantly enhances the BCI performance in MI classifications.

17.
Neural Netw ; 105: 356-370, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29936360

RESUMEN

Video image recognition has been extensively studied with rapid progress recently. However, most methods focus on short-term rather than long-term (contextual) video recognition. Convolutional recurrent neural networks (ConvRNNs) provide robust spatio-temporal information processing capabilities for contextual video recognition, but require extensive computation that slows down training. Inspired by normalization and detrending methods, in this paper we propose "adaptive detrending" (AD) for temporal normalization in order to accelerate the training of ConvRNNs, especially of convolutional gated recurrent unit (ConvGRU). For each neuron in a recurrent neural network (RNN), AD identifies the trending change within a sequence and subtracts it, removing the internal covariate shift. In experiments testing for contextual video recognition with ConvGRU, results show that (1) ConvGRU clearly outperforms feed-forward neural networks, (2) AD consistently and significantly accelerates training and improves generalization, (3) performance is further improved when AD is coupled with other normalization methods, and most importantly, (4) the more long-term contextual information is required, the more AD outperforms existing methods.


Asunto(s)
Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas/métodos , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/normas , Grabación en Video/métodos
18.
F1000Res ; 52016.
Artículo en Inglés | MEDLINE | ID: mdl-27803797

RESUMEN

Three (3) different methods (logistic regression, covariate shift and k-NN) were applied to five (5) internal datasets and one (1) external, publically available dataset where covariate shift existed. In all cases, k-NN's performance was inferior to either logistic regression or covariate shift. Surprisingly, there was no obvious advantage for using covariate shift to reweight the training data in the examined datasets.

19.
Proc ACM Int Conf Ubiquitous Comput ; 2016: 875-885, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28090605

RESUMEN

Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects. In this paper, we present domain adaptation methods for assessing and mitigating potential sources of performance loss in lab-to-field generalization and apply them to the problem of cocaine use detection from wearable electrocardiogram sensor data.

20.
Brain Inform ; 2(3): 145-153, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27747505

RESUMEN

It is important to acquire web users' psychological characteristics. Recent studies have built computational models for predicting psychological characteristics by supervised learning. However, the generalization of built models might be limited due to the differences in distribution between the training and test dataset. To address this problem, we propose some local regression transfer learning methods. Specifically, k-nearest-neighbour and clustering reweighting methods are developed to estimate the importance of each training instance, and a weighted risk regression model is built for prediction. Adaptive parameter-setting method is also proposed to deal with the situation that the test dataset has no labels. We performed experiments on prediction of users' personality and depression based on users of different genders or different districts, and the results demonstrated that the methods could improve the generalization capability of learning models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA