Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(18): 18433-18440, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37682623

RESUMEN

Bilayer graphene, which forms moiré superlattices, possesses distinct electronic and optical properties owing to its hybridized energy band and the emergence of van Hove singularities depending on its twist angle. Extensive research has been conducted on the global characteristics of moiré superlattices induced by their long-range periodicity. However, the local properties, which differ owing to the variations in the three-dimensional atomic arrangement, within a moiré unit cell have been rarely explored. In this study, we demonstrate the highly localized excitation of carbon 1s electrons to unoccupied van Hove singularities in twisted bilayer graphene by electron energy loss spectroscopy using a monochromated transmission electron microscope. The core-level excitations associated with the van Hove singularities exhibit a systematic twist-angle dependence analogous to optical excitations. Furthermore, local variations in the core-level van Hove singularity peaks, which can originate from the core-exciton lifetimes and band modifications corresponding to the local stacking geometry within a moiré unit cell, are unambiguously corroborated.

2.
Enzymes ; 51: 79-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36336411

RESUMEN

Ionizing radiation causes various types of DNA damage, such as single- (SSBs) and double-strand breaks (DSBs), nucleobase lesions, abasic sites (AP sites), and cross-linking between complementary strands of DNA or DNA and proteins. DSBs are among the most harmful type of DNA damage, inducing serious genetic effects such as cell lethality and mutation. Nucleobase lesions and AP sites, on the other hand, may be less deleterious and are promptly repaired by base excision repair (BER) pathways. Recently, biochemical approaches to quantify nucleobase lesions and AP sites have revealed certain types of non-strand break lesions as harmful DNA damage, called clustered DNA damage. Such clusters can retard nucleobase excision repair enzymes, and can sometimes be converted to DSBs by BER catalysis. This unique character of clustered DNA damage strongly depends on the spatial density of ionization or excitation events occurring at the track end of initial radiation or low energy secondary electrons. In particular, the photoelectric effect of elements comprising biological molecules, followed by emission of Auger electrons, are key factors in determining the future fate of each clustered damage site. This chapter describes biological studies of clustered nucleobase lesions with SSBs or AP sites, and mechanistical studies on core level excitation and Auger relaxation giving rise to clustered DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , Radiación Ionizante , ADN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA