Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Access Microbiol ; 6(8)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148688

RESUMEN

Gilliamella is a genus of bacteria commonly found as symbionts of corbiculate bees. Research into energy metabolism by this genus has predominantly been done through in vivo and in vitro experiments focused on the type species Gilliamella apicola. This study examined 95 publicly available genomes representing at least 18 Gilliamella species isolated predominantly from the hindgut of corbiculate bees. Energy metabolism pathways were found to be highly conserved across not only the Gilliamella but also other members of the family Orbaceae. Evidence suggests Gilliamella are capable of fermentation of both fumarate and pyruvate. Fermentation of the former produces succinate. Fermentation of the latter can produce acetate, ethanol, formate, and both isoforms of lactate for all Gilliamella and acetoin for some G. apicola strains. According to genomic evidence examined, all Gilliamella are only capable of respiration under microoxic conditions, while higher oxygen conditions likely inhibits respiration. Evidence suggests that the glycolysis and pentose phosphate pathways are essential mechanisms for the metabolism of energy sources, with the TCA cycle playing little to no role in energy metabolism for all Gilliamella species. Uptake of energy sources, i.e. sugars and derivatives, likely relies predominantly on the phosphoenol-pyruvate-dependent phosphotransferase system. Differences in the utilized energy sources may confer fitness advantages associated with specific host species.

2.
Insect Sci ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594229

RESUMEN

Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.

3.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38650068

RESUMEN

The Melipona gut microbiota differs from other social bees, being characterized by the absence of crucial corbiculate core gut symbionts and a high occurrence of environmental strains. We studied the microbial diversity and composition of three Melipona species and their honey to understand which strains are obtained by horizontal transmission (HT) from the pollination environment, represent symbionts with HT from the hive/food stores or social transmission (ST) between nestmates. Bees harbored higher microbial alpha diversity and a different and more species-specific bacterial composition than honey. The fungal communities of bee and honey samples are also different but less dissimilar. As expected, the eusocial corbiculate core symbionts Snodgrassella and Gilliamella were absent in bees that had a prevalence of Lactobacillaceae - including Lactobacillus (formerly known as Firm-5), Bifidobacteriaceae, Acetobacteraceae, and Streptococcaceae - mainly strains close to Floricoccus, a putative novel symbiont acquired from flowers. They might have co-evolved with these bees via ST, and along with environmental Lactobacillaceae and Pectinatus (Veillonellaceae) strains obtained by HT, and Metschnikowia and Saccharomycetales yeasts acquired by HT from honey or the pollination environment, including plants/flowers, possibly compose the Melipona core microbiota. This work contributes to the understanding of Melipona symbionts and their modes of transmission.


Asunto(s)
Bacterias , Miel , Simbiosis , Animales , Abejas/microbiología , Miel/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota , Microbioma Gastrointestinal , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , ARN Ribosómico 16S/genética , Filogenia
4.
J Insect Physiol ; 144: 104464, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481409

RESUMEN

Diurnal pollinators often rely on color cues to make decisions when visiting flowers. Orchid bees are major tropical pollinators, with most studies of their pollination behavior to date focusing on scent collection and chemical ecology. The objective of this study was to measure their spectral sensitivities to preliminarily characterize color vision in the orchid bee Euglossa dilemma and compare it to the known spectral sensitivity of other closely related bees. We compared E. dilemma's spectral sensitivities and opsin protein sequences to four closely related corbiculate bees. E. dilemma appears to have trichromatic vision, with spectral sensitivity peaks in the ultraviolet, blue, and green wavelengths (347 ± 0.957 (SE) nm, 429 ± 6.570 nm, and 537 ± 1.183 nm, respectively), similar to other measured bees. We found no differences between male and female E. dilemma visual systems despite neuroanatomical and behavioral differences reported in the literature. The lambda maxes of the ultraviolet-sensitive photoreceptors appeared to be the most conserved among the bees we compared. Meanwhile, both the lambda maxes of the blue photoreceptors and the blue opsin proteins sequences were the least conserved. Our results open up new possibilities for the study of color vision and color-mediated pollination behaviors in orchid bees.


Asunto(s)
Flores , Polinización , Abejas , Masculino , Femenino , Animales , Odorantes , Ecología
5.
Bioengineering (Basel) ; 9(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36290512

RESUMEN

Gilliamella and Snodgrassella, members of core gut microbiota in corbiculate bees, have high species diversity and adaptability to a wide range of hosts. In this study, we performed species taxonomy and phylogenetic analysis for Gilliamella and Snodgrassella strains that we isolated in our laboratory, in combination with published whole-genome. Functional effects of accessory and unique genes were investigated by KEGG category and pathway annotation in pan-genome analysis. Consequently, in Gilliamella, we inferred the importance of carbohydrate metabolism, amino acid metabolism, membrane transport, energy metabolism, and metabolism of cofactors and vitamins in accessory or unique genes. The pathway mentioned above, plus infectious disease, lipid metabolism, nucleotide metabolism as well as replication and repair exert a pivotal role in accessory or unique genes of Snodgrassella. Further analysis revealed the existence of functional differentiation of accessory and unique genes among Apis-derived genomes and Bombus-derived genomes. We also identified eight and four biosynthetic gene clusters in all Gilliamella and Snodgrassella genomes, respectively. Our study provides a good insight to better understand how host heterogeneity influences the bacterial speciation and affects the versatility of the genome of the gut bacteria.

6.
Brain Behav Evol ; 96(1): 13-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34265763

RESUMEN

Sucrose represents an important carbohydrate source for most bee species. In the Western honeybee (Apis mellifera) it was shown that individual sucrose responsiveness correlates with the task performed in the colony, supporting the response threshold theory which states that individuals with the lowest threshold for a task-associated stimuli will perform the associated task. Tyramine was shown to modulate sucrose responsiveness, most likely via the tyramine 1 receptor. This receptor is located in brain areas important for the processing of gustatory stimuli. We asked whether the spatial expression pattern of the tyramine 1 receptor is a unique adaptation of honeybees or if its expression represents a conserved trait. Using a specific tyramine receptor 1 antibody, we compared the spatial expression of this receptor in the brain of different corbiculate bee species, including eusocial honeybees, bumblebees, stingless bees, and the solitary bee Osmia bicornis as an outgroup. We found a similar labeling pattern in the mushroom bodies, the central complex, the dorsal lobe, and the gnathal ganglia, indicating a conserved receptor expression. With respect to sucrose responsiveness this result is of special importance. We assume that the tyramine 1 receptor expression in these neuropiles provides the basis for modulation of sucrose responsiveness. Furthermore, the tyramine 1 receptor expression seems to be independent of size, as labeling is similar in bee species that differ greatly in their body size. However, the situation in the optic lobes appears to be different. Here, the lobula of stingless bees is clearly labeled by the tyramine receptor 1 antibody, whereas this labeling is absent in other species. This indicates that the regulation of this receptor is different in the optic lobes, while its function in this neuropile remains unclear.


Asunto(s)
Receptores de Amina Biogénica , Animales , Abejas , Encéfalo/metabolismo , Cuerpos Pedunculados , Receptores de Amina Biogénica/metabolismo , Tiramina
7.
Mol Phylogenet Evol ; 80: 88-94, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25034728

RESUMEN

The economically most important group of bees is the "corbiculates", or pollen basket bees, some 890 species of honeybees (Apis), bumblebees (Bombus), stingless bees (Meliponini), and orchid bees (Euglossini). Molecular studies have indicated that the corbiculates are closest to the New World genera Centris, with 230 species, and Epicharis, with 35, albeit without resolving the precise relationships. Instead of concave baskets, these bees have hairy hind legs on which they transport pollen mixed with floral oil, collected with setae on the anterior and middle legs. We sampled two-thirds of all Epicharis, a third of all Centris, and representatives of the four lineages of corbiculates for four nuclear gene regions, obtaining a well-supported phylogeny that has the corbiculate bees nested inside the Centris/Epicharis clade. Fossil-calibrated molecular clocks, combined with a biogeographic reconstruction incorporating insights from the fossil record, indicate that the corbiculate clade arose in the New World and diverged from Centris 84 (72-95)mya. The ancestral state preceding corbiculae thus was a hairy hind leg, perhaps adapted for oil transport as in Epicharis and Centris bees. Its replacement by glabrous, concave baskets represents a key innovation, allowing efficient transport of plant resins and large pollen/nectar loads and freeing the corbiculate clade from dependence on oil-offering flowers. The transformation could have involved a novel function of Ubx, the gene known to change hairy into smooth pollen baskets in Apis and Bombus.


Asunto(s)
Abejas/clasificación , Evolución Biológica , Filogenia , Animales , Teorema de Bayes , Abejas/anatomía & histología , Abejas/genética , Fósiles , Modelos Genéticos , Polinización , Análisis de Secuencia de ADN
8.
Mol Ecol Resour ; 13(5): 844-50, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23848578

RESUMEN

Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century-old museum specimens and shown to be useful as mini-barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode.


Asunto(s)
Abejas/clasificación , Abejas/genética , Código de Barras del ADN Taxonómico/métodos , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Animales , Cartilla de ADN/genética , ADN Mitocondrial/química , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA